Interfacial interactions between natural RBC membranes and synthetic polymeric nanoparticles

被引:328
作者
Luk, Brian T. [1 ,3 ]
Hu, Che-Ming Jack [2 ,3 ]
Fang, Ronnie H. [2 ,3 ]
Dehaini, Diana [2 ,3 ]
Carpenter, Cody [2 ,3 ]
Gao, Weiwei [2 ,3 ]
Zhang, Liangfang [2 ,3 ]
机构
[1] Univ Calif San Diego, Dept Bioengn, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Dept Nanoengn, La Jolla, CA 92093 USA
[3] Univ Calif San Diego, Moores Canc Ctr, La Jolla, CA 92093 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
SIALIC-ACID; SURFACE-CHARGE; ERYTHROCYTE; CELL; FUNCTIONALIZATION; DELIVERY; CHEMISTRY;
D O I
10.1039/c3nr06371b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The unique structural features and stealth properties of a recently developed red blood cell membrane-cloaked nanoparticle (RBC-NP) platform raise curiosity over the interfacial interactions between natural cellular membranes and polymeric nanoparticle substrates. Herein, several interfacial aspects of the RBC-NPs are examined, including completeness of membrane coverage, membrane sidedness upon coating, and the effects of polymeric particles' surface charge and surface curvature on the membrane cloaking process. The study shows that RBC membranes completely cover negatively charged polymeric nanoparticles in a right-side-out manner and enhance the particles' colloidal stability. The membrane cloaking process is applicable to particle substrates with a diameter ranging from 65 to 340 nm. Additionally, the study reveals that both surface glycans on RBC membranes and the substrate properties play a significant role in driving and directing the membrane-particle assembly. These findings further the understanding of the dynamics between cellular membranes and nanoscale substrates and provide valuable information toward future development and characterization of cellular membrane-cloaked nanodevices.
引用
收藏
页码:2730 / 2737
页数:8
相关论文
共 35 条
[1]  
Aryal S, 2013, NANOMEDICINE-UK, V8, P1271, DOI [10.2217/NNM.12.153, 10.2217/nnm.12.153]
[2]   Biomimetic Delivery with Micro- and Nanoparticles [J].
Balmert, Stephen C. ;
Little, Steven R. .
ADVANCED MATERIALS, 2012, 24 (28) :3757-3778
[3]   PLGA-lecithin-PEG core-shell nanoparticles for controlled drug delivery [J].
Chan, Juliana M. ;
Zhang, Liangfang ;
Yuet, Kai P. ;
Liao, Grace ;
Rhee, June-Wha ;
Langer, Robert ;
Farokhzad, Omid C. .
BIOMATERIALS, 2009, 30 (08) :1627-1634
[4]   Simple preparation of nanoparticles coated with carbohydrate-carrying polymers [J].
Cho, CS ;
Jeong, YI ;
Ishihara, T ;
Takei, R ;
Park, JU ;
Park, KH ;
Maruyama, A ;
Akaike, T .
BIOMATERIALS, 1997, 18 (04) :323-326
[5]   Red blood cell-mimicking synthetic biomaterial particles [J].
Doshi, Nishit ;
Zahr, Alisar S. ;
Bhaskar, Srijanani ;
Lahann, Joerg ;
Mitragotri, Samir .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (51) :21495-21499
[6]  
DUROCHER JR, 1975, BLOOD, V45, P11
[7]  
Evans W., 1991, MEMBRANE STRUCTURE F, P1
[8]  
EYLAR EH, 1962, J BIOL CHEM, V237, P1992
[9]   Lipid-insertion enables targeting functionalization of erythrocyte membrane-cloaked nanoparticles [J].
Fang, Ronnie H. ;
Hu, Che-Ming J. ;
Chen, Kevin N. H. ;
Luk, Brian T. ;
Carpenter, Cody W. ;
Gao, Weiwei ;
Li, Shulin ;
Zhang, Dong-Er ;
Lu, Weiyue ;
Zhang, Liangfang .
NANOSCALE, 2013, 5 (19) :8884-8888
[10]   Lipid layers on polyelectrolyte multilayer supports [J].
Fischlechner, Martin ;
Zaulig, Markus ;
Meyer, Stefan ;
Estrela-Lopis, Irina ;
Cuellar, Luis ;
Irigoyen, Joseba ;
Pescador, Paula ;
Brumen, Milan ;
Messner, Paul ;
Moya, Sergio ;
Donath, Edwin .
SOFT MATTER, 2008, 4 (11) :2245-2258