Highly-Ordered Mesoporous Carbon Nitride with Ultrahigh Surface Area and Pore Volume as a Superior Dehydrogenation Catalyst

被引:230
作者
Zhao, Zhongkui [1 ]
Dai, Yitao [1 ]
Lin, Jinhan [1 ]
Wang, Guiru [1 ]
机构
[1] Dalian Univ Technol, Sch Chem Engn, State Key Lab Fine Chem, Dalian 116024, Liaoning, Peoples R China
基金
中国国家自然科学基金;
关键词
NITROGEN-DOPED GRAPHENE; METAL-FREE CATALYSTS; FACILE SYNTHESIS; OXYGEN-REDUCTION; OXIDATIVE DEHYDROGENATION; ELECTROCATALYTIC ACTIVITY; CHEMICAL-SYNTHESIS; NANOPOROUS CARBON; ACTIVE-SITES; EFFICIENT;
D O I
10.1021/cm5005664
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work, a highly ordered mesoporous carbon nitride nanorods with 971-1124 m(2) g(-1) of superhigh specific surface area, 1.31-1.79 cm(3) g(-1) of ultralarge pore volume, bimodal mesostructure, and 9.3-23 wt % of high N content was prepared via a facile nanocasting approach using SBA-15 as template and hexamethylenetetramine as carbon nitride precursor, and the specific surface area and pore volume as well as N content are strongly dependent on the chosen precursor and pyrolysis temperature. The as-prepared materials were well characterized by HRTEM, FESEM, XRD, BET, Raman, FT-IR, XPS, and the textural structure and morphology were confirmed. The finding breaks through the bottleneck problems for fabricating mesoporous carbon nitride with both ultrahigh surface area and super large pore volume by employing an unexplored hexamethylenetetramine as carbon nitride precursor. The current synthetic strategy can be extended to the preparation of various mesoporous carbon nitride with different textural characteristics by using diverse templates under changeable preparation conditions. The developed mesoporous carbon nitride material with 750 degrees C of pyrolysis temperature exhibits high superior catalytic performance, ascribed to the promoting effect of nitrogen within the carbon matrix, the rich C=O group and defect/edge feature on the surface, small size of graphitic crystallite, as well as the ultrahigh surface area and pore volume. It can also be concluded that the microstructures including bulk and surface structure features and surface chemical properties of the carbon-based materials have a decisive influence on their catalytic performance. The developed material can be employed in various organic transformations such as the base-catalyzed reactions, selective oxidation, dehydrogenation, photocatalysis, and electrocatalysis as well as acting as a novel and efficient candidate for CO2 capture, supercapacitor, purification of contaminated water, and future drug-delivery systems.
引用
收藏
页码:3151 / 3161
页数:11
相关论文
共 92 条
[1]   AN INFRARED STUDY OF THE DEHYDROGENATION OF ETHYLBENZENE TO STYRENE OVER IRON-BASED CATALYSTS [J].
ADDIEGO, WP ;
ESTRADA, CA ;
GOODMAN, DW ;
ROSYNEK, MP .
JOURNAL OF CATALYSIS, 1994, 146 (02) :407-414
[2]   CO2 activation and promotional effect in the oxidation of cyclic olefins over mesoporous carbon nitrides [J].
Ansari, Mohd Bismillah ;
Min, Byung-Hoon ;
Mo, Yong-Hwan ;
Park, Sang-Eon .
GREEN CHEMISTRY, 2011, 13 (06) :1416-1421
[3]   Solvothermal preparation of graphite-like C3N4 nanocrystals [J].
Bai, YJ ;
Lü, B ;
Liu, ZG ;
Li, L ;
Cui, DL ;
Xu, XG ;
Wang, QL .
JOURNAL OF CRYSTAL GROWTH, 2003, 247 (3-4) :505-508
[4]   Ionothermal Synthesis of Crystalline, Condensed, Graphitic Carbon Nitride [J].
Bojdys, Michael J. ;
Mueller, Jens-Oliver ;
Antonietti, Markus ;
Thomas, Arne .
CHEMISTRY-A EUROPEAN JOURNAL, 2008, 14 (27) :8177-8182
[5]   Gold Nanoparticles Embedded in a Mesoporous Carbon Nitride Stabilizer for Highly Efficient Three-Component Coupling Reaction [J].
Datta, K. K. R. ;
Reddy, B. V. Subba ;
Ariga, Katsuhiko ;
Vinu, Ajayan .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2010, 49 (34) :5961-5965
[6]   Synthesis of boron nitride with ordered mesostructure [J].
Dibandjo, P ;
Bois, L ;
Chassagneux, F ;
Cornu, D ;
Letoffe, JM ;
Toury, B ;
Babonneau, F ;
Miele, P .
ADVANCED MATERIALS, 2005, 17 (05) :571-+
[7]   Mesoporous Nitrogen-Doped Carbon for the Electrocatalytic Synthesis of Hydrogen Peroxide [J].
Fellinger, Tim-Patrick ;
Hasche, Frederic ;
Strasser, Peter ;
Antonietti, Markus .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (09) :4072-4075
[8]   Chemical synthesis of mesoporous carbon nitrides using hard templates and their use as a metal-free catalyst for friedel-crafts reaction of benzene [J].
Goettmann, Frederic ;
Fischer, Anna ;
Antonietti, Markus ;
Thomas, Arne .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2006, 45 (27) :4467-4471
[9]   Catalytic Consequences of Spatial Constraints and Acid Site Location for Monomolecular Alkane Activation on Zeolites [J].
Gounder, Rajamani ;
Iglesia, Enrique .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (05) :1958-1971
[10]   Synthesis of g-C3N4 nanoparticles in mesoporous silica host matrices [J].
Groenewolt, M ;
Antonietti, M .
ADVANCED MATERIALS, 2005, 17 (14) :1789-+