DIFFUSION STRATEGIES FOR IN-NETWORK PRINCIPAL COMPONENT ANALYSIS

被引:0
作者
Ghadban, Nisrine [1 ,2 ]
Honeine, Paul [1 ]
Mourad-Chehade, Farah [1 ]
Francis, Clovis [2 ]
Farah, Joumana [3 ]
机构
[1] Univ Technol Troyes, CNRS, Inst Charles Delaunay, Troyes, France
[2] Univ Libanaise, Fac Genie, Beirut, Lebanon
[3] Holy Spirit Univ Kaslik, Fac Engn, Dept Telecommun, Kaslik, Lebanon
来源
2014 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP) | 2014年
关键词
Principal component analysis; network; adaptive learning; distributed processing; ADAPTATION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper deals with the principal component analysis in networks, where it is improper to compute the sample covariance matrix. To this end, we derive several in-network strategies to estimate the principal axes, including noncooperative and cooperative (diffusion-based) strategies. The performance of the proposed strategies is illustrated on diverse applications, including image processing and dimensionality reduction of time series in wireless sensor networks.
引用
收藏
页数:6
相关论文
共 20 条
[1]   Principal component analysis [J].
Abdi, Herve ;
Williams, Lynne J. .
WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2010, 2 (04) :433-459
[2]   A survey on sensor networks [J].
Akyildiz, IF ;
Su, WL ;
Sankarasubramaniam, Y ;
Cayirci, E .
IEEE COMMUNICATIONS MAGAZINE, 2002, 40 (08) :102-114
[3]   UPDATING SINGULAR VALUE DECOMPOSITION [J].
BUNCH, JR ;
NIELSEN, CP .
NUMERISCHE MATHEMATIK, 1978, 31 (02) :111-129
[4]  
Chen F., 2010, P INT C WIR COMM NET, P1
[5]   Diffusion Adaptation Strategies for Distributed Optimization and Learning Over Networks [J].
Chen, Jianshu ;
Sayed, Ali H. .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (08) :4289-4305
[6]  
CHITRADEVI N., 2011, Proc. 1st Int'l. Conf. Wireless Technologies for Humanitarian Relief, P147, DOI DOI 10.1145/2185216.2185262
[7]   Merging and splitting eigenspace models [J].
Hall, P ;
Marshall, D ;
Martin, R .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2000, 22 (09) :1042-1049
[8]   Online Kernel Principal Component Analysis: A Reduced-Order Model [J].
Honeine, Paul .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (09) :1814-1826
[9]  
Huang L., 2006, P ADV NEUR INF PROC, V19, P617
[10]  
Kargupta H, 2000, LECT NOTES COMPUT<D>, V1910, P452