On the reconstruction of obstacles and of rigid bodies immersed in a viscous incompressible fluid

被引:2
作者
San Martin, Jorge [1 ,2 ]
Schwindt, Erica L. [3 ]
Takahashi, Takeo [4 ,5 ,6 ]
机构
[1] Univ Chile, Dept Ingn Matemat, Fac Ciencias Fis & Matemat, Casilla 170-3 Correo 3, Santiago, Chile
[2] Univ Chile, UMR 2071, Fac Ciencias Fis & Matemat, Ctr Modelamiento Matemat, Casilla 170-3 Correo 3, Santiago, Chile
[3] Univ Nacl Rio Cuarto, Dept Matemat, Fac Ciencias Exactas, RA-5800 Cordoba, Argentina
[4] Inria, F-54600 Villers Les Nancy, France
[5] Univ Lorraine, IECL, UMR 7502, F-54506 Vandoeuvre Les Nancy, France
[6] CNRS, IECL, UMR 7502, F-54506 Vandoeuvre Les Nancy, France
来源
JOURNAL OF INVERSE AND ILL-POSED PROBLEMS | 2017年 / 25卷 / 01期
关键词
Geometrical inverse problems; fluid-structure interaction; Navier-Stokes system; enclosure method; complex geometrical solutions; BOUNDARY-VALUE PROBLEM; GLOBAL UNIQUENESS; ENCLOSURE METHOD; CAUCHY DATA; INVERSE; IDENTIFICATION; ELASTICITY; STOKES;
D O I
10.1515/jiip-2014-0056
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the geometrical inverse problem consisting in recovering an unknown obstacle in a viscous incompressible fluid by measurements of the Cauchy force on the exterior boundary. We deal with the case where the fluid equations are the nonstationary Stokes system and using the enclosure method, we can recover the convex hull of the obstacle and the distance from a point to the obstacle. With the same method, we can obtain the same result in the case of a linear fluid-structure system composed by a rigid body and a viscous incompressible fluid. We also tackle the corresponding nonlinear systems: the Navier-Stokes system and a fluid-structure system with free boundary. Using complex spherical waves, we obtain some partial information on the distance from a point to the obstacle.
引用
收藏
页码:1 / 21
页数:21
相关论文
共 50 条
  • [31] An immersed boundary method for the fluid-structure interaction of slender flexible structures in viscous fluid
    Tschisgale, Silvio
    Froehlich, Jochen
    JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 423
  • [32] Analysis of a Simplified Model of Rigid Structure Floating in a Viscous Fluid
    Maity, Debayan
    San Martin, Jorge
    Takahashi, Takeo
    Tucsnak, Marius
    JOURNAL OF NONLINEAR SCIENCE, 2019, 29 (05) : 1975 - 2020
  • [33] A fast immersed boundary method for external incompressible viscous flows using lattice Green's functions
    Liska, Sebastian
    Colonius, Tim
    JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 331 : 257 - 279
  • [34] Studies on a DNA double helicoidal structure immersed in viscous bio-fluid
    Lim, C. W.
    Shu, Jian-Jun
    ICCN 2002: INTERNATIONAL CONFERENCE ON COMPUTATIONAL NANOSCIENCE AND NANOTECHNOLOGY, 2002, : 387 - 390
  • [35] Decay Estimates for Linearized Unsteady Incompressible Viscous Flows Around Rotating and Translating Bodies
    Deuring P.
    Kračmar S.
    Nečasová Š.
    Wittwer P.
    Journal of Elliptic and Parabolic Equations, 2015, 1 (2) : 325 - 333
  • [36] ON POINTWISE DECAY OF LINEARIZED STATIONARY INCOMPRESSIBLE VISCOUS FLOW AROUND ROTATING AND TRANSLATING BODIES
    Deuring, Paul
    Kracmar, Stanislav
    Necasova, Sarka
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2011, 43 (02) : 705 - 738
  • [37] Three-dimensional nonsimple viscous liquids dragged by one-dimensional immersed bodies
    Giusteri, G. G.
    Marzocchi, A.
    Musesti, A.
    MECHANICS RESEARCH COMMUNICATIONS, 2010, 37 (07) : 642 - 646
  • [38] Well-posedness for the coupling between a viscous incompressible fluid and an elastic structure
    Boulakia, Muriel
    Guerrero, Sergio
    Takahashi, Takeo
    NONLINEARITY, 2019, 32 (10) : 3548 - 3592
  • [39] Hybrid algorithm for modeling of fluid-structure interaction in incompressible, viscous flows
    Young, Yin Lu
    Chae, Eun Jung
    Akcabay, Deniz Tolga
    ACTA MECHANICA SINICA, 2012, 28 (04) : 1030 - 1041
  • [40] On the interface boundary conditions between two interacting incompressible viscous fluid flows
    Brillard, Alain
    El Jarroudi, Mustapha
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (05) : 881 - 904