Optimal Neural Tracking Control with Metaheuristic Parameter Identification for Uncertain Nonlinear Systems with Disturbances

被引:4
作者
Recio-Colmenares, Roxana [1 ]
Joel Gurubel-Tun, Kelly [1 ]
Zuniga-Grajeda, Virgilio [1 ]
机构
[1] Univ Guadalajara, Sch Engn & Technol Innovat, Campus Tonala, Guadalajara 45425, Jalisco, Mexico
来源
APPLIED SCIENCES-BASEL | 2020年 / 10卷 / 20期
关键词
optimal control; artificial neural network; metaheuristic optimization; nonlinear systems; CONTROL DESIGN; PASSIVITY; NETWORKS;
D O I
10.3390/app10207073
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this paper, we propose an inverse optimal neural control strategy for uncertain nonlinear systems subject to external disturbances. This control strategy is developed based on a neural observer for the estimation of unmeasured states and inverse optimal control theory for trajectory tracking. The stabilization of states along the desired trajectory is ensured via a control Lyapunov function. The optimal parameters of the control law are identified by different nature-inspired metaheuristic algorithms, namely: Ant Lion Optimizer, Grey Wolf Optimizer, Harris Hawks Optimization, and Whale Optimization Algorithm. Finally, a highly nonlinear biological system subject to parameter uncertainties and external disturbances (Activated Sludge Model) is proposed to validate the control strategy. Simulation results demonstrate that the control law with Ant Lion Optimizer outperforms the other optimization methods in terms of trajectory tracking in the presence of disturbances. The control law with Harris Hawks Optimization shows a better convergence of the neural states in presence of parameter uncertainty.
引用
收藏
页码:1 / 18
页数:18
相关论文
共 35 条
[1]  
Alanis A., 2017, DISCRETE TIME NEURAL
[2]   Discrete-time recurrent high order neural networks for nonlinear identification [J].
Alanis, Alma Y. ;
Sanchez, Edgar N. ;
Loukianov, Alexander G. ;
Hernandez, EstebanA. .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2010, 347 (07) :1253-1265
[3]   DISCRETE-TIME REDUCED ORDER NEURAL OBSERVERS FOR UNCERTAIN NONLINEAR SYSTEMS [J].
Alanis, Alma Y. ;
Sanchez, Edgar N. ;
Ricalde, Luis J. .
INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2010, 20 (01) :29-38
[4]  
Arefi M., 2017, N AM POWER S NAPS, P1, DOI DOI 10.1109/CCAAW.2017.8001605
[5]   Robust optimal feedback control design for uncertain systems based on artificial neural network approximation of the Bellman's value function [J].
Ballesteros, Mariana ;
Chairez, Isaac ;
Poznyak, Alexander .
NEUROCOMPUTING, 2020, 413 :134-144
[6]  
Devarapalli R., 2019, 2019 8 INT C POWER S, P1
[7]   Antlion optimizer-ANFIS load frequency control for multi-interconnected plants comprising photovoltaic and wind turbine [J].
Fathy, Ahmed ;
Kassem, Ahmed M. .
ISA TRANSACTIONS, 2019, 87 :282-296
[8]   Performance Evaluation of Antlion Optimizer Based Regulator in Automatic Generation Control of Interconnected Power System [J].
Gupta, Esha ;
Saxena, Akash .
JOURNAL OF ENGINEERING, 2016, 2016
[9]  
Gurubel K.J., 2019, ARTIFICIAL NEURAL NE, P79, DOI [10.1016/C2018-0-01649-7, DOI 10.1016/C2018-0-01649-7]
[10]   Inverse optimal neural control via passivity approach for nonlinear anaerobic bioprocesses with biofuels production [J].
Gurubel, Kelly J. ;
Sanchez, Edgar N. ;
Coronado-Mendoza, Alberto ;
Zuniga-Grajeda, Virgilio ;
Sulbaran-Rangel, Belkis ;
Breton-Deval, Luz .
OPTIMAL CONTROL APPLICATIONS & METHODS, 2019, 40 (05) :848-858