Multi-stage convex relaxation for feature selection

被引:61
作者
Zhang, Tong [1 ]
机构
[1] Rutgers State Univ, Hill Ctr, Piscataway, NJ 08854 USA
基金
美国国家科学基金会;
关键词
multi-stage convex relaxation; non-convex penalty; variable selection; NONCONCAVE PENALIZED LIKELIHOOD; VARIABLE SELECTION; SPARSITY; LASSO;
D O I
10.3150/12-BEJ452
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A number of recent work studied the effectiveness of feature selection using Lasso. It is known that under the restricted isometry properties (RIP), Lasso does not generally lead to the exact recovery of the set of nonzero coefficients, due to the looseness of convex relaxation. This paper considers the feature selection property of nonconvex regularization, where the solution is given by a multi-stage convex relaxation scheme. The nonconvex regularizer requires two tuning parameters (compared to one tuning parameter for Lasso). Although the method is more complex than Lasso, we show that under appropriate conditions including the dependence of a tuning parameter on the support set size, the local solution obtained by this procedure recovers the set of nonzero coefficients without suffering from the bias of Lasso relaxation, which complements parameter estimation results of this procedure in (J. Mach. Learn. Res. 11 (2011) 1087-1107).
引用
收藏
页码:2277 / 2293
页数:17
相关论文
共 20 条
[1]   SIMULTANEOUS ANALYSIS OF LASSO AND DANTZIG SELECTOR [J].
Bickel, Peter J. ;
Ritov, Ya'acov ;
Tsybakov, Alexandre B. .
ANNALS OF STATISTICS, 2009, 37 (04) :1705-1732
[2]   Sparsity oracle inequalities for the Lasso [J].
Bunea, Florentina ;
Tsybakov, Alexandre ;
Wegkamp, Marten .
ELECTRONIC JOURNAL OF STATISTICS, 2007, 1 :169-194
[3]   Decoding by linear programming [J].
Candes, EJ ;
Tao, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (12) :4203-4215
[4]   Enhancing Sparsity by Reweighted l1 Minimization [J].
Candes, Emmanuel J. ;
Wakin, Michael B. ;
Boyd, Stephen P. .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2008, 14 (5-6) :877-905
[5]   Variable selection via nonconcave penalized likelihood and its oracle properties [J].
Fan, JQ ;
Li, RZ .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (456) :1348-1360
[6]   Sparsity in penalized empirical risk minimization [J].
Koltchinskii, Vladimir .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2009, 45 (01) :7-57
[7]   Sup-norm convergence rate and sign concentration property of Lasso and Dantzig estimators [J].
Lounici, Karim .
ELECTRONIC JOURNAL OF STATISTICS, 2008, 2 :90-102
[8]   High-dimensional graphs and variable selection with the Lasso [J].
Meinshausen, Nicolai ;
Buehlmann, Peter .
ANNALS OF STATISTICS, 2006, 34 (03) :1436-1462
[10]   On the conditions used to prove oracle results for the Lasso [J].
van de Geer, Sara A. ;
Buehlmann, Peter .
ELECTRONIC JOURNAL OF STATISTICS, 2009, 3 :1360-1392