Reduction of Overfitting in Diabetes Prediction Using Deep Learning Neural Network

被引:41
|
作者
Ashiquzzaman, Akm [1 ]
Tushar, Abdul Kawsar [1 ]
Islam, Md. Rashedul [1 ]
Shon, Dongkoo [4 ]
Im, Kichang [4 ]
Park, Jeong-Ho [3 ]
Lim, Dong-Sun [3 ]
Kim, Jongmyon [2 ]
机构
[1] Univ Asia Pacific, Dept CSE, Dhaka, Bangladesh
[2] Univ Ulsan, Dept Elect Elect & Comp Engn, Ulsan, South Korea
[3] ETRI, Intelligent Robot Res Div, Ind IT Convergence Res Grp, SW Contents Res Lab, Daejeon, South Korea
[4] Univ Ulsan, Safety Ctr, Ulsan, South Korea
来源
IT CONVERGENCE AND SECURITY 2017, VOL 1 | 2018年 / 449卷
关键词
Dropout; Healthcare; Data overfitting; Diabetes prediction; Neural network; Deep learning;
D O I
10.1007/978-981-10-6451-7_5
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Accurate prediction of diabetes is an important issue in health prognostics. However, data overfitting degrades the prediction accuracy in diabetes prognosis. In this paper, a reliable prediction system for the disease of diabetes is presented using a dropout method to address the overfitting issue. In the proposed method, deep learning neural network is employed where fully connected layers are followed by dropout layers. The proposed neural network outperforms other state-of-art methods in better prediction scores for the Pima Indians Diabetes Data Set.
引用
收藏
页码:35 / 43
页数:9
相关论文
共 50 条
  • [1] Efficient Deep Neural Network Training Techniques for Overfitting Avoidance
    Sabiri, Bihi
    EL Asri, Bouchra
    Rhanoui, Maryem
    ENTERPRISE INFORMATION SYSTEMS, ICEIS 2022, 2023, 487 : 198 - 221
  • [2] Research on overfitting of deep learning
    Li, Haidong
    Li, Jiongcheng
    Guan, Xiaoming
    Liang, Binghao
    Lai, Yuting
    Luo, Xinglong
    2019 15TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS 2019), 2019, : 78 - 81
  • [3] Deep learning approach for diabetes prediction using PIMA Indian dataset
    Naz, Huma
    Ahuja, Sachin
    JOURNAL OF DIABETES AND METABOLIC DISORDERS, 2020, 19 (01) : 391 - 403
  • [4] Deep learning approach for diabetes prediction using PIMA Indian dataset
    Huma Naz
    Sachin Ahuja
    Journal of Diabetes & Metabolic Disorders, 2020, 19 : 391 - 403
  • [5] Deep Learning Reservoir Porosity Prediction Using Integrated Neural Network
    Wang, Jun
    Cao, Junxing
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2022, 47 (09) : 11313 - 11327
  • [6] Deep Learning Reservoir Porosity Prediction Using Integrated Neural Network
    Jun Wang
    Junxing Cao
    Arabian Journal for Science and Engineering, 2022, 47 : 11313 - 11327
  • [7] Performance Evaluation of Deep Dense Layer Neural Network for Diabetes Prediction
    Gupta, Niharika
    Kaushik, Baijnath
    Rahmani, Mohammad Khalid Imam
    Lashari, Saima Anwar
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 76 (01): : 347 - 366
  • [8] Deep convolutional neural network for diabetes mellitus prediction
    Suja A. Alex
    J. Jesu Vedha Nayahi
    H. Shine
    Vaisshalli Gopirekha
    Neural Computing and Applications, 2022, 34 : 1319 - 1327
  • [9] Deep convolutional neural network for diabetes mellitus prediction
    Alex, Suja A.
    Nayahi, J. Jesu Vedha
    Shine, H.
    Gopirekha, Vaisshalli
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (02): : 1319 - 1327
  • [10] GPU Occupancy Prediction of Deep Learning Models Using Graph Neural Network
    Mei, Hengquan
    Qu, Huaizhi
    Sun, Jingwei
    Gao, Yanjie
    Lin, Haoxiang
    Sun, Guangzhong
    2023 IEEE INTERNATIONAL CONFERENCE ON CLUSTER COMPUTING, CLUSTER, 2023, : 318 - 329