Variational principles and well-posedness in optimization and calculus of variations

被引:50
作者
Ioffe, AD [1 ]
Zaslavski, AJ [1 ]
机构
[1] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
关键词
calculus of variations; variational principle; existence of solutions; well-posed optimization problem;
D O I
10.1137/S0363012998335632
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The concluding result of the paper states that variational problems are generically solvable (and even well-posed in a strong sense) without the convexity and growth conditions always present in individual existence theorems. This and some other generic well-posedness theorems are obtained as realizations of a general variational principle extending the variational principle of Deville-Godefroy-Zizler.
引用
收藏
页码:566 / 581
页数:16
相关论文
共 24 条
[1]  
[Anonymous], 1921, FONDAMENTI CALCOLO V
[2]   FRECHET DIFFERENTIABILITY OF CONVEX FUNCTIONS [J].
ASPLUND, E .
ACTA MATHEMATICA UPPSALA, 1968, 121 (1-2) :31-&
[3]  
ATTOUCH H, 1992, ANN MAT PUR APPL, V160, P303
[4]   CONVEX-OPTIMIZATION AND THE EPI-DISTANCE TOPOLOGY [J].
BEER, G ;
LUCCHETTI, R .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 327 (02) :795-813
[5]   A GENERAL-APPROACH TO THE EXISTENCE OF MINIMIZERS OF ONE-DIMENSIONAL NONCOERCIVE INTEGRALS OF THE CALCULUS OF VARIATIONS [J].
BOTTERON, B ;
MARCELLINI, P .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1991, 8 (02) :197-223
[6]  
Cesari L., 1983, OPTIMIZATION THEORY
[7]  
CINQUINI S, 1936, ANN SCUOLA NORM SUP, V5, P675
[8]  
Clarke F. H., 1983, OPTIMIZATION NONSMOO
[9]  
Deville R, 1993, Pitman Monographs and Surveys in Pure and Applied Mathematics
[10]  
Dontchev AL, 1993, Lecture Notes in Mathematics, V1543