The Results of Thermal Expansion Investigation for Effective Thermoelectric Materials

被引:0
|
作者
Shtern, Yury I. [1 ]
Rogachev, Maxim S. [1 ]
Bublik, Vladimir T. [2 ]
Tarasova, Irina V. [2 ]
Pozdniakov, Andrei V. [2 ]
机构
[1] Natl Res Univ Elect Technol, Inst Adv Mat & Technol, Moscow, Russia
[2] Natl Univ Sci & Technol MISIS, Coll New Mat & Nanotechnol, Moscow, Russia
来源
PROCEEDINGS OF THE 2019 IEEE CONFERENCE OF RUSSIAN YOUNG RESEARCHERS IN ELECTRICAL AND ELECTRONIC ENGINEERING (EICONRUS) | 2019年
基金
俄罗斯科学基金会;
关键词
thermal expansion; dilatometer method; thermoelectric materials; thermal linear expansion coefficient; COEFFICIENT; DESIGN;
D O I
10.1109/eiconrus.2019.8656804
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The thermal expansion of effective thermoelectric materials in the temperature range of 200-1200 K has been studied using quartz dilatometers. In present work the method and mathematical model for calculation of thermal linear expansion coefficients (TLEC) of thermoelectric materials were chosen and substantiated. As a result of the study, it was experimentally established that the TLEC of low temperature thermoelectric materials Bi2Te2.8Se0.2 and Bi0.5Sb1.5Te3 are 14.85.10(-6) K-1 and 14.98.10(-6) K-1 in the temperature range of 200-400 K respectively. Research of middle temperature materials was performed. It was found that the TLEC of Bi2Te2.4Se0.6 and Bi0.4Sb1.6Te3 weakly change in the working temperature range from 380 to 600 K and is in the range of (13.93-14.33).10(-6) K-1. Values of TLEC for PbTe is 23.07.10(-6) K-1, value of TLEC of GeTe is 24.47.10(-6) K-1 respectively. TLEC for high temperature nanostructural material Si0.8Ge0.2 is equal to 4.68.10(-6) K-1 in the temperature range 300-1200 K.
引用
收藏
页码:1932 / 1936
页数:5
相关论文
共 50 条
  • [31] Thermal Expansion of Magnesian Materials
    I. G. Maryasev
    V. N. Koptelov
    F. S. Kaplan
    O. R. Grishina
    Refractories and Industrial Ceramics, 2003, 44 : 338 - 342
  • [32] Thermal Expansion of SOFC Materials
    Tietz, F.
    IONICS, 1999, 5 (1-2) : 129 - 139
  • [33] Thermal expansion of NASICON materials
    Pet'kov, V. I.
    Asabina, E. A.
    Shchelokov, I. A.
    INORGANIC MATERIALS, 2013, 49 (05) : 502 - 506
  • [34] Negative Thermal Expansion Materials
    Evans, John S. O.
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2000, 39 (01) : 535 - 539
  • [35] Negative thermal expansion materials
    Jakubinek, Michael B.
    Whitman, Catherine A.
    White, Mary Anne
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2010, 99 (01) : 165 - 172
  • [36] Thermal expansion of NASICON materials
    V. I. Pet’kov
    E. A. Asabina
    I. A. Shchelokov
    Inorganic Materials, 2013, 49 : 502 - 506
  • [37] THERMAL EXPANSION OF COMPOSITE MATERIALS
    TUMMALA, RR
    FRIEDBER.AL
    JOURNAL OF APPLIED PHYSICS, 1970, 41 (13) : 5104 - &
  • [38] Negative thermal expansion materials
    Evans, JSO
    JOURNAL OF THE CHEMICAL SOCIETY-DALTON TRANSACTIONS, 1999, (19): : 3317 - 3326
  • [39] Thermoelectric and Thermal Properties of the Materials for the Flexible Thermoelectric Generator Application
    Babich, Alexey, V
    Pepelyaev, Dmitry, V
    PROCEEDINGS OF THE 2021 IEEE CONFERENCE OF RUSSIAN YOUNG RESEARCHERS IN ELECTRICAL AND ELECTRONIC ENGINEERING (ELCONRUS), 2021, : 2415 - 2418
  • [40] Influence of spherical inclusions on effective thermoelectric properties of thermoelectric composite materials
    闫文凯
    张爱兵
    易利军
    王保林
    王骥
    Chinese Physics B, 2020, (05) : 514 - 521