NMR Crystallography: Evaluation of Hydrogen Positions in Hydromagnesite by 13C{1H} REDOR Solid-State NMR and Density Functional Theory Calculation of Chemical Shielding Tensors

被引:20
作者
Cui, Jinlei [1 ]
Olmsted, David L. [2 ]
Mehta, Anil K. [3 ]
Asta, Mark [2 ,4 ]
Hayes, Sophia E. [1 ]
机构
[1] Washington Univ, Dept Chem, 1 Brookings Dr,Campus Box 1134, St Louis, MO 63130 USA
[2] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA
[3] Emory Univ, Dept Chem, 1515 Pierce Dr, Atlanta, GA 30322 USA
[4] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA USA
基金
美国国家科学基金会;
关键词
C-13{H-1} REDOR; computational chemistry; CSA lineshape; hydromagnesite; NMR spectroscopy; CRYSTAL-STRUCTURE PREDICTION; X-RAY-DIFFRACTION; MAGNESIUM CARBONATES; LOCAL-STRUCTURE; SPECTROSCOPY; CRYSTALLIZATION; TEMPERATURE; COMPLEXES; RESONANCE; ORDER;
D O I
10.1002/anie.201813306
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Solid-state NMR measurements coupled with density functional theory (DFT) calculations demonstrate how hydrogen positions can be refined in a crystalline system. The precision afforded by rotational-echo double-resonance (REDOR) NMR to interrogate C-13-H-1 distances is exploited along with DFT determinations of the C-13 tensor of carbonates (CO32-). Nearby H-1 nuclei perturb the axial symmetry of the carbonate sites in the hydrated carbonate mineral, hydromagnesite [4MgCO(3)Mg(OH)(2)4H(2)O]. A match between the calculated structure and solid-state NMR was found by testing multiple semi-local and dispersion-corrected DFT functionals and applying them to optimize atom positions, starting from X-ray diffraction (XRD)-determined atomic coordinates. This was validated by comparing calculated to experimental C-13{H-1} REDOR and C-13 chemical shift anisotropy (CSA) tensor values. The results show that the combination of solid-state NMR, XRD, and DFT can improve structure refinement for hydrated materials.
引用
收藏
页码:4210 / 4216
页数:7
相关论文
共 71 条
  • [21] Gilli G., 2009, NATURE HYDROGEN BOND
  • [22] Density functional theory with London dispersion corrections
    Grimme, Stefan
    [J]. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2011, 1 (02) : 211 - 228
  • [23] ROTATIONAL-ECHO DOUBLE-RESONANCE NMR
    GULLION, T
    SCHAEFER, J
    [J]. JOURNAL OF MAGNETIC RESONANCE, 1989, 81 (01): : 196 - 200
  • [24] GULLION T, 1989, ADV MAGN RESON, V13, P57
  • [25] Haeberlen U., 1976, Advanced Magnetic Resonance, V1st
  • [26] Precipitation in the Mg-carbonate system -: effects of temperature and CO2 pressure
    Haenchen, Markus
    Prigiobbe, Valentina
    Baciocchi, Renato
    Mazzotti, Marco
    [J]. CHEMICAL ENGINEERING SCIENCE, 2008, 63 (04) : 1012 - 1028
  • [27] Refining crystal structures with experimental 13C NMR shift tensors and lattice-including electronic structure methods
    Harper, James K.
    Iuliucci, Robbie
    Gruber, Matthew
    Kalakewich, Keyton
    [J]. CRYSTENGCOMM, 2013, 15 (43): : 8693 - 8704
  • [28] Characterizing challenging microcrystalline solids with solid-state NMR shift tensor and synchrotron X-ray powder diffraction data: Structural analysis of ambuic acid
    Harper, JK
    Grant, DM
    Zhang, YG
    Lee, PL
    Von Dreele, R
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (05) : 1547 - 1552
  • [29] Characterization of stereochemistry and molecular conformation using solid-state NMR tensors
    Harper, JK
    Mulgrew, AE
    Li, JY
    Barich, DH
    Strobel, GA
    Grant, DM
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (40) : 9837 - 9842
  • [30] 'NMR Crystallization': in-situ NMR techniques for time-resolved monitoring of crystallization processes
    Harris, Kenneth D. M.
    Hughes, Colan E.
    Williams, Andrew
    Edwards-Gau, Gregory R.
    [J]. ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY, 2017, 73 : 137 - 148