IRREDUCIBILITY AND GEOMETRIC ERGODICITY OF HAMILTONIAN MONTE CARLO

被引:8
作者
Durmus, Alain [1 ]
Moulines, Eric [2 ]
Saksman, Eero [3 ]
机构
[1] Univ Paris Saclay, CNRS, ENS, Paris, France
[2] HSE Univ, Fac Comp Sci, Moscow, Russia
[3] Univ Helsinki, Dept Math & Stat, Helsinki, Finland
关键词
Hamiltonian Monte Carlo; Markov Chain Monte Carlo; irreducibility; geometric ergodicity; CONVERGENCE; HASTINGS;
D O I
10.1214/19-AOS1941
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Hamiltonian Monte Carlo (HMC) is currently one of the most popular Markov Chain Monte Carlo algorithms to sample smooth distributions over continuous state space. This paper discusses the irreducibility and geometric ergodicity of the HMC algorithm. We consider cases where the number of steps of the Stormer-Verlet integrator is either fixed or random. Under mild conditions on the potential U associated with target distribution pi, we first show that the Markov kernel associated to the HMC algorithm is irreducible and positive recurrent. Under more stringent conditions, we then establish that the Markov kernel is Harris recurrent. We provide verifiable conditions on U under which the HMC sampler is geometrically ergodic. Finally, we illustrate our results on several examples.
引用
收藏
页码:3545 / 3564
页数:20
相关论文
共 29 条
  • [1] [Anonymous], 2014, INT C ADV NEURAL INF
  • [2] [Anonymous], 2008, SPRINGER SERIES STAT
  • [3] The geometric foundations of Hamiltonian Monte Carlo
    Betancourt, Michael
    Byrne, Simon
    Livingstone, Sam
    Girolami, Mark
    [J]. BERNOULLI, 2017, 23 (4A) : 2257 - 2298
  • [4] Bou-Rabee N., 2018, PREPRINT
  • [5] Geometric integrators and the Hamiltonian Monte Carlo method
    Bou-Rabee, Nawaf
    Sanz-Serna, J. M.
    [J]. ACTA NUMERICA, 2018, 27 : 113 - 206
  • [6] RANDOMIZED HAMILTONIAN MONTE CARLO
    Bou-Rabee, Nawaf
    Maria Sanz-Serna, Jesus
    [J]. ANNALS OF APPLIED PROBABILITY, 2017, 27 (04) : 2159 - 2194
  • [7] Geodesic Monte Carlo on Embedded Manifolds
    Byrne, Simon
    Girolami, Mark
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2013, 40 (04) : 825 - 845
  • [8] Theoretical and numerical comparison of some sampling methods for molecular dynamics
    Cances, Eric
    Legoll, Frederic
    Stoltz, Gabriel
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2007, 41 (02): : 351 - 389
  • [9] Douc R., 2018, Springer Series in Operations Research and Financial Engineering, DOI DOI 10.1007/978-3-319-97704-1
  • [10] HYBRID MONTE-CARLO
    DUANE, S
    KENNEDY, AD
    PENDLETON, BJ
    ROWETH, D
    [J]. PHYSICS LETTERS B, 1987, 195 (02) : 216 - 222