Core/shell structured halloysite/polyaniline nanotubes with enhanced electrochromic properties

被引:57
作者
Hu, Fei [1 ]
Xu, Jianlong [2 ]
Zhang, Sihang [1 ]
Jiang, Jie [1 ]
Yan, Bin [1 ]
Gu, Yingchun [1 ]
Jiang, Mengjin [3 ]
Lin, Shaojian [1 ]
Chen, Sheng [1 ]
机构
[1] Sichuan Univ, Coll Light Ind Text & Food Engn, Funct Polymer Mat Lab, Chengdu 610065, Sichuan, Peoples R China
[2] Soochow Univ, Jiangsu Key Lab Carbon Based Funct Mat & Devices, Inst Funct Nano & Soft Mat FUNSOM, Suzhou 215123, Jiangsu, Peoples R China
[3] Sichuan Univ, Coll Polymer Sci & Engn, State Key Lab Polymer Mat & Engn, Chengdu 610065, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
CONTROLLABLE GROWTH; HYBRID MATERIALS; GRAPHENE OXIDE; ENERGY-STORAGE; POLYANILINE; SHELL; COMPOSITE; NANOCOMPOSITE; PERFORMANCE; FILMS;
D O I
10.1039/c8tc01163j
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Novel halloysite (HNT)/polyaniline (PANI) nanocomposites are fabricated by controllable in situ chemical polymerization for electrochromic applications. The nanocomposites with different morphologies can be obtained simply by controlling the relative proportions of aniline (ANI) monomers and HNTs in the chemical polymerization system. "Adsorption'' is proposed to account for the preferential growth of PANI along HNT nanotubes to form a core/shell structure. The films casted by the nanocomposites exhibited remarkably enhanced electrochromic performances. When compared with pure polyaniline, nanocomposite films possess a faster response time (1.0 s for bleaching and 3.0 s for coloring), higher optical contrast (60.5%), and more remarkable switching stability (over 500 cycles). The unique nanocomposites pave the way for developing new functional materials with enhanced properties for new applications.
引用
收藏
页码:5707 / 5715
页数:9
相关论文
共 50 条
[11]  
Chunlei J., 2017, ADV ENERGY MATER, V7
[12]   1D/2D Carbon Nanomaterial-Polymer Dielectric Composites with High Permittivity for Power Energy Storage Applications [J].
Dang, Zhi-Min ;
Zheng, Ming-Sheng ;
Zha, Jun-Wei .
SMALL, 2016, 12 (13) :1688-1701
[13]   Fast electrochromic response of ultraporous polyaniline nanofibers [J].
Erro, Eustaquio M. ;
Baruzzi, Ana M. ;
Iglesias, Rodrigo A. .
POLYMER, 2014, 55 (10) :2440-2444
[14]   Layer-structured silver nanowire/polyaniline composite film as a high performance X-band EMI shielding material [J].
Fang, Fang ;
Li, Yuan-Qing ;
Xiao, Hong-Mei ;
Hu, Ning ;
Fu, Shao-Yun .
JOURNAL OF MATERIALS CHEMISTRY C, 2016, 4 (19) :4193-4203
[15]   Flexible Solid-State Supercapacitors with Enhanced Performance from Hierarchically Graphene Nanocomposite Electrodes and Ionic Liquid Incorporated Gel Polymer Electrolyte [J].
Feng, Lanxiang ;
Wang, Kai ;
Zhang, Xiong ;
Sun, Xianzhong ;
Li, Chen ;
Ge, Xingbo ;
Ma, Yanwei .
ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (04)
[16]   Hybrid electrochromic film based on polyaniline and TiO2 nanorods array [J].
Fu, Xingqi ;
Jia, Chunyang ;
Wan, Zhongquan ;
Weng, Xiaolong ;
Xie, Jianhang ;
Deng, Longjiang .
ORGANIC ELECTRONICS, 2014, 15 (11) :2702-2709
[17]   Reactive template strategy for fabrication of MnO2/polyaniline coaxial nanocables and their catalytic application in the oxidative decolorization of rhodamine B [J].
Han, Jie ;
Wang, Minggui ;
Cao, Shiyi ;
Fang, Ping ;
Lu, Song ;
Chen, Rong ;
Guo, Rong .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (42) :13197-13202
[18]   Opening and blocking the inner-pores of halloysite [J].
Joo, Yongho ;
Sim, Jae Hyun ;
Jeon, Yangjun ;
Lee, Sang Uck ;
Sohn, Daewon .
CHEMICAL COMMUNICATIONS, 2013, 49 (40) :4519-4521
[19]   Nanocomposite of Polyaniline Nanorods Grown on Graphene Nanoribbons for Highly Capacitive Pseudocapacitors [J].
Li, Lei ;
Raji, Abdul-Rahman O. ;
Fei, Huilong ;
Yang, Yang ;
Samuel, Errol L. G. ;
Tour, James M. .
ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (14) :6622-6627
[20]   High Power In-Plane Micro-Supercapacitors Based on Mesoporous Polyaniline Patterned Graphene [J].
Liu, Zhaoyang ;
Liu, Shaohua ;
Dong, Renhao ;
Yang, Sheng ;
Lu, Hao ;
Narita, Akimitsu ;
Feng, Xinliang ;
Muellen, Klaus .
SMALL, 2017, 13 (14)