Self-consistent full-wave and Fokker-Planck calculations for ion cyclotron heating in non-Maxwellian plasmas

被引:47
作者
Jaeger, E. F.
Berry, L. A.
Ahern, S. D.
Barrett, R. F.
Batchelor, D. B.
Carter, M. D.
D'Azevedo, E. F.
Moore, R. D.
Harvey, R. W.
Myra, J. R.
D'Ippolito, D. A.
Dumont, R. J.
Phillips, C. K.
Okuda, H.
Smithe, D. N.
Bonoli, P. T.
Wright, J. C.
Choi, M.
机构
[1] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
[2] CompX, Del Mar, CA 92014 USA
[3] Lodestar Res Corp, Boulder, CO 80301 USA
[4] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA
[5] Tech X Corp, Boulder, CO 80303 USA
[6] MIT, Ctr Plasma Fusion, Cambridge, MA 02139 USA
[7] Gen Atom, San Diego, CA 92186 USA
关键词
D O I
10.1063/1.2173629
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Magnetically confined plasmas can contain significant concentrations of nonthermal plasma particles arising from fusion reactions, neutral beam injection, and wave-driven diffusion in velocity space. Initial studies in one-dimensional and experimental results show that nonthermal energetic ions can significantly affect wave propagation and heating in the ion cyclotron range of frequencies. In addition, these ions can absorb power at high harmonics of the cyclotron frequency where conventional two-dimensional global-wave models are not valid. In this work, the all-orders global-wave solver AORSA [E. F. Jaeger , Phys. Rev. Lett. 90, 195001 (2003)] is generalized to treat non-Maxwellian velocity distributions. Quasilinear diffusion coefficients are derived directly from the wave fields and used to calculate energetic ion velocity distributions with the CQL3D Fokker-Planck code [R. W. Harvey and M. G. McCoy, Proceedings of the IAEA Technical Committee Meeting on Simulation and Modeling of Thermonuclear Plasmas, Montreal, Canada, 1992 (USDOC NTIS Document No. DE93002962)]. For comparison, the quasilinear coefficients can be calculated numerically by integrating the Lorentz force equations along particle orbits. Self-consistency between the wave electric field and resonant ion distribution function is achieved by iterating between the global-wave and Fokker-Planck solutions.
引用
收藏
页数:9
相关论文
共 28 条
[1]   Overview of ITER-FEAT - The future international burning plasma experiment [J].
Aymar, R ;
Chuyanov, VA ;
Huguet, T ;
Shimomura, Y .
NUCLEAR FUSION, 2001, 41 (10) :1301-1310
[2]   INFLUENCE OF SHEARED POLOIDAL ROTATION ON EDGE TURBULENCE [J].
BIGLARI, H ;
DIAMOND, PH ;
TERRY, PW .
PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1990, 2 (01) :1-4
[3]  
Brambilla M., 1998, Kinetic Theory of Plasma Waves
[4]  
CARLSSON J, 1994, P JOINT VAR LAUS WOR, P351
[5]  
Cesario R, 1999, AIP CONF PROC, V485, P100, DOI 10.1063/1.59739
[6]   Radio-frequency-driven radial current and plasma rotation in a tokamak [J].
Chan, VS ;
Chiu, SC ;
Omelchenko, YA .
PHYSICS OF PLASMAS, 2002, 9 (02) :501-510
[7]   Monte Carlo orbit/full wave simulation of ion cyclotron resonance frequency wave damping on resonant ions in tokamaks [J].
Choi, M ;
Chan, VS ;
Pinsker, RI ;
Chiu, SC ;
Heidbrink, WW .
PHYSICS OF PLASMAS, 2005, 12 (07) :1-11
[8]  
CHOI M, 2005, B AM PHYS SOC, V50, P29
[9]   Effects of non-Maxwellian species on ion cyclotron waves propagation and absorption in magnetically confined plasmas [J].
Dumont, R ;
Phillips, CK ;
Smithe, DN .
PHYSICS OF PLASMAS, 2005, 12 (04) :1-10
[10]  
Harvey R.W., 1992, P IAEA TECHNICAL COM, P489