Almost conservation laws for stochastic nonlinear Schrodinger equations

被引:3
|
作者
Cheung, Kelvin [1 ,2 ]
Li, Guopeng [3 ,4 ]
Oh, Tadahiro [3 ,4 ]
机构
[1] Heriot Watt Univ, Dept Math, Edinburgh EH14 4AS, Midlothian, Scotland
[2] Maxwell Inst Math Sci, Edinburgh EH14 4AS, Midlothian, Scotland
[3] Univ Edinburgh, Sch Math, James Clerk Maxwell Bldg,Kings Bldg, Edinburgh EH9 3FD, Midlothian, Scotland
[4] Maxwell Inst Math Sci, James Clerk Maxwell Bldg,Kings Bldg, Edinburgh EH9 3FD, Midlothian, Scotland
基金
英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
Stochastic nonlinear Schrodinger equation; Global well-posedness; I-method; Almost conservation law;
D O I
10.1007/s00028-020-00659-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present a globalization argument for stochastic nonlinear dispersive PDEs with additive noises by adapting the I-method (= the method of almost conservation laws) to the stochastic setting. As a model example, we consider the defocusing stochastic cubic nonlinear Schrodinger equation (SNLS) on R-3 with additive stochastic forcing, white in time and correlated in space, such that the noise lies below the energy space. By combining the I-method with Ito's lemma and a stopping time argument, we construct global-in-time dynamics for SNLS below the energy space.
引用
收藏
页码:1865 / 1894
页数:30
相关论文
共 50 条
  • [1] Almost conservation laws for stochastic nonlinear Schrödinger equations
    Kelvin Cheung
    Guopeng Li
    Tadahiro Oh
    Journal of Evolution Equations, 2021, 21 : 1865 - 1894
  • [2] Almost conservation laws and global rough solutions to a nonlinear Schrodinger equation
    Colliander, J
    Keel, M
    Staffilani, G
    Takaoka, H
    Tao, T
    MATHEMATICAL RESEARCH LETTERS, 2002, 9 (5-6) : 659 - 682
  • [3] Some generalized coupled nonlinear Schrodinger equations and conservation laws
    Liu, Wei
    Geng, Xianguo
    Xue, Bo
    MODERN PHYSICS LETTERS B, 2017, 31 (32):
  • [4] Conservation laws in higher-order nonlinear Schrodinger equations
    Kim, J
    Park, QH
    Shin, HJ
    PHYSICAL REVIEW E, 1998, 58 (05): : 6746 - 6751
  • [5] A super hierarchy of coupled derivative nonlinear Schrodinger equations and conservation laws
    He, Guoliang
    Zhai, Yunyun
    Geng, Xianguo
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (07) : 2228 - 2233
  • [6] Stochastic nonlinear Schrodinger equations
    Barbu, Viorel
    Roeckner, Michael
    Zhang, Deng
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 136 : 168 - 194
  • [7] A super hierarchy of the vector nonlinear Schrodinger equations and Hamiltonian structures, conservation laws
    He, Guoliang
    Zhai, Yunyun
    Geng, Xianguo
    JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (08)
  • [8] Solutions and laws of conservation for coupled nonlinear Schrodinger equations: Lie group analysis
    Pulov, VI
    Uzunov, IM
    Chacarov, EJ
    PHYSICAL REVIEW E, 1998, 57 (03) : 3468 - 3477
  • [9] GROUP THEORETIC ASPECTS OF CONSERVATION LAWS OF NONLINEAR DISPERSIVE WAVES - KDV TYPE EQUATIONS AND NONLINEAR SCHRODINGER EQUATIONS
    KUMEI, S
    JOURNAL OF MATHEMATICAL PHYSICS, 1977, 18 (02) : 256 - 264
  • [10] Conservation laws and solitons for the coupled cubic-quintic nonlinear Schrodinger equations in nonlinear optics
    Shan, Wen-Rui
    Qi, Feng-Hua
    Guo, Rui
    Xue, Yu-Shan
    Wang, Pan
    Tian, Bo
    PHYSICA SCRIPTA, 2012, 85 (01)