Non-Hermitian tridiagonal random matrices and returns to the origin of a random walk

被引:14
作者
Cicuta, GM [1 ]
Contedini, M
Molinari, L
机构
[1] Univ Parma, Dipartimento Fis, I-43100 Parma, Italy
[2] Ist Nazl Fis Nucl, Grp Parma Collegato, Sezione Milano, I-43100 Parma, Italy
[3] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy
[4] Ist Nazl Fis Nucl, Sezione Milano, I-20133 Milan, Italy
关键词
band random matrices; non-Hermetian random matrices; random walks;
D O I
10.1023/A:1018671308053
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study a class of tridiagonal matrix models, the "q-roots of unity" models. which includes the sign (q = 2) and the clock (q = infinity) models by Feinberg and Zee. We find that the eigenvalue densities are bounded by and have the symmetries of the regular polygon with 2q sides, in the complex plane. Furthermore, the averaged traces of M-k are integers that count closed random walks on the line such that each site is visited a number of times multiple of q. We obtain an explicit evaluation for them.
引用
收藏
页码:685 / 699
页数:15
相关论文
共 15 条
[1]   Random-matrix theory of quantum transport [J].
Beenakker, CWJ .
REVIEWS OF MODERN PHYSICS, 1997, 69 (03) :731-808
[2]  
CICUTA GM, 1999, PR9903063
[3]  
DERRIDA B, 1999, CONDMAT9906235
[4]   THE DYNAMICS OF A DISORDERED LINEAR CHAIN [J].
DYSON, FJ .
PHYSICAL REVIEW, 1953, 92 (06) :1331-1338
[5]  
FEINBERG J, 1997, CONDMAT9706218
[6]  
FEINBERG J, CONDMAT9710040
[7]  
GHUR T, 1998, PHYS REP, V299, P190
[8]   STATISTICAL ENSEMBLES OF COMPLEX QUATERNION AND REAL MATRICES [J].
GINIBRE, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1965, 6 (03) :440-&
[9]   Distribution of eigenvalues in non-Hermitian Anderson models [J].
Goldsheid, IY ;
Khoruzhenko, BA .
PHYSICAL REVIEW LETTERS, 1998, 80 (13) :2897-2900
[10]   Localization transitions in non-Hermitian quantum mechanics [J].
Hatano, N ;
Nelson, DR .
PHYSICAL REVIEW LETTERS, 1996, 77 (03) :570-573