The linear sampling method for anisotropic media

被引:81
作者
Cakoni, F [1 ]
Colton, D [1 ]
Haddar, H [1 ]
机构
[1] Univ Delaware, Dept Math Sci, Newark, DE 19716 USA
关键词
inverse scattering; anisotropic medium; linear sampling method;
D O I
10.1016/S0377-0427(02)00361-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the inverse scattering problem of determining the support of an anisotropic inhomogeneous medium from a knowledge of the incident and scattered time harmonic acoustic wave at fixed frequency. To this end, we extend the linear sampling method from the isotropic case to the case of anisotropic medium. In the case when the coefficients are real we also show that the set of transmission eigenvalues forms a discrete set. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:285 / 299
页数:15
相关论文
共 12 条
[1]   The inverse electromagnetic scattering problem for an anisotropic medium [J].
Colton, D ;
Potthast, R .
QUARTERLY JOURNAL OF MECHANICS AND APPLIED MATHEMATICS, 1999, 52 :349-372
[2]   Transmission eigenvalues and a problem of Hans!Lewy [J].
Colton, D ;
Päivärinta, L .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 117 (02) :91-104
[3]   Inverse scattering from an orthotropic medium [J].
Colton, D ;
Kress, R ;
Monk, P .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1997, 81 (02) :269-298
[4]   An approximation property of importance in inverse scattering theory [J].
Colton, D ;
Sleeman, BD .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2001, 44 :449-454
[5]   Recent developments in inverse acoustic scattering theory [J].
Colton, D ;
Coyle, J ;
Monk, P .
SIAM REVIEW, 2000, 42 (03) :369-414
[6]  
Colton D., 1998, INVERSE ACOUSTIC ELE, DOI DOI 10.1007/978-3-662-03537-5
[7]   Locating the support of objects contained in a two-layered background medium in two dimensions [J].
Coyle, J .
INVERSE PROBLEMS, 2000, 16 (02) :275-292
[8]  
GYLYSCOLWELL F, 2000, INVERSE PROBL, V16, P139
[9]   On the uniqueness of the shape of a penetrable, anisotropic obstacle [J].
Hähner, P .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 116 (01) :167-180
[10]  
HORMANDER L, 1985, ANAL LINEAR DIFFEREN, V3