Dynamical and current-induced Dzyaloshinskii-Moriya interaction: Role for damping, gyromagnetism, and current-induced torques in noncollinear magnets

被引:7
作者
Freimuth, Frank [1 ,2 ,3 ,4 ]
Bluegel, Stefan [1 ,2 ,3 ]
Mokrousov, Yuriy [1 ,2 ,3 ,4 ]
机构
[1] Forschungszentrum Julich, Peter Grunberg Inst, D-52425 Julich, Germany
[2] Forschungszentrum Julich, Inst Adv Simulat, D-52425 Julich, Germany
[3] JARA, D-52425 Julich, Germany
[4] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany
基金
欧洲研究理事会;
关键词
Torque;
D O I
10.1103/PhysRevB.102.245411
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Both applied electric currents and magnetization dynamics modify the Dzyaloshinskii-Moriya interaction (DMI), which we call current-induced DMI (CIDMI) and dynamical DMI (DDMI), respectively. We report a theory of CIDMI and DDMI. The inverse of CIDMI consists in charge pumping by a time-dependent gradient of magnetization partial derivative(2) M(r, t)/partial derivative r partial derivative t, while the inverse of DDMI describes the torque generated by partial derivative(2) M(r, t)/partial derivative r partial derivative t. In noncollinear magnets, CIDMI and DDMI depend on the local magnetization direction. The resulting spatial gradients correspond to torques that need to be included into the theories of Gilbert damping, gyromagnetism, and current-induced torques (CITs) in order to satisfy the Onsager reciprocity relations. CIDMI is related to the modification of orbital magnetism induced by magnetization dynamics, which we call dynamical orbital magnetism (DOM), and spatial gradients of DOM contribute to charge pumping. We present applications of this formalism to the CITs and to the torque-torque correlation in textured Rashba ferromagnets.
引用
收藏
页数:21
相关论文
共 41 条
  • [1] Phenomenology of chiral damping in noncentrosymmetric magnets
    Akosa, Collins Ashu
    Miron, Ioan Mihai
    Gaudin, Gilles
    Manchon, Aurelien
    [J]. PHYSICAL REVIEW B, 2016, 93 (21)
  • [2] Generalization of Faraday's law to include nonconservative spin forces
    Barnes, S. E.
    Maekawa, S.
    [J]. PHYSICAL REVIEW LETTERS, 2007, 98 (24)
  • [3] Orbital magnetization in crystalline solids: Multi-band insulators, Chern insulators, and metals
    Ceresoli, Davide
    Thonhauser, T.
    Vanderbilt, David
    Resta, R.
    [J]. PHYSICAL REVIEW B, 2006, 74 (02)
  • [4] Ciccarelli C, 2015, NAT NANOTECHNOL, V10, P50, DOI [10.1038/NNANO.2014.252, 10.1038/nnano.2014.252]
  • [5] Thermoelectric response of an interacting two-dimensional electron gas in a quantizing magnetic field
    Cooper, NR
    Halperin, BI
    Ruzin, IM
    [J]. PHYSICAL REVIEW B, 1997, 55 (04): : 2344 - 2359
  • [6] Scaling Behavior of the Spin Pumping Effect in Ferromagnet-Platinum Bilayers
    Czeschka, F. D.
    Dreher, L.
    Brandt, M. S.
    Weiler, M.
    Althammer, M.
    Imort, I. -M.
    Reiss, G.
    Thomas, A.
    Schoch, W.
    Limmer, W.
    Huebl, H.
    Gross, R.
    Goennenwein, S. T. B.
    [J]. PHYSICAL REVIEW LETTERS, 2011, 107 (04)
  • [7] Berry phase theory of Dzyaloshinskii-Moriya interaction and spin-orbit torques
    Freimuth, F.
    Bluegel, S.
    Mokrousov, Y.
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2014, 26 (10)
  • [8] Spin-orbit torques and tunable Dzyaloshinskii-Moriya interaction in Co/Cu/Co trilayers
    Freimuth, Frank
    Bluegel, Stefan
    Mokrousov, Yuriy
    [J]. PHYSICAL REVIEW B, 2018, 98 (02)
  • [9] Chiral damping, chiral gyromagnetism, and current-induced torques in textured one-dimensional Rashba ferromagnets
    Freimuth, Frank
    Bluegel, Stefan
    Mokrousov, Yuriy
    [J]. PHYSICAL REVIEW B, 2017, 96 (10)
  • [10] Relation of the Dzyaloshinskii-Moriya interaction to spin currents and to the spin-orbit field
    Freimuth, Frank
    Bluegel, Stefan
    Mokrousov, Yuriy
    [J]. PHYSICAL REVIEW B, 2017, 96 (05)