The Grape VlWRKY3 Gene Promotes Abiotic and Biotic Stress Tolerance in Transgenic Arabidopsis thaliana

被引:45
|
作者
Guo, Rongrong [1 ,2 ,3 ]
Qiao, Hengbo [1 ,2 ]
Zhao, Jiao [1 ,2 ]
Wang, Xianhang [1 ,2 ]
Tu, Mingxing [1 ,2 ]
Guo, Chunlei [1 ,2 ]
Wan, Ran [1 ,2 ]
Li, Zhi [1 ,2 ]
Wang, Xiping [1 ,2 ]
机构
[1] Northwest A&F Univ, Coll Hort, State Key Lab Crop Stress Biol Arid Areas, Xianyang, Peoples R China
[2] Northwest A&F Univ, Minist Agr, Key Lab Hort Plant Biol & Germplasm Innovat North, Xianyang, Peoples R China
[3] Guangxi Acad Agr Sci, Nanning, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
abiotic stress; biotic stress; grape; transgenic; VlWRKY3; WRKY TRANSCRIPTION FACTORS; DISEASE RESISTANCE; ABSCISIC-ACID; OXIDATIVE STRESS; DROUGHT TOLERANCE; BOTRYTIS-CINEREA; VITIS-PSEUDORETICULATA; SIGNAL-TRANSDUCTION; NEGATIVE REGULATOR; ECTOPIC EXPRESSION;
D O I
10.3389/fpls.2018.00545
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
WRKY transcription factors are known to play important roles in plant responses to various abiotic and biotic stresses. The grape WRKY gene, WRKY3 was previously reported to respond to salt and drought stress, as well as methyl jasmonate and ethylene treatments in Vitis labrusca x V. vinifera cv. 'Kyoho.' In the current study, WRKY3 from the 'Kyoho' grape cultivar was constitutively expressed in Arabidopsis thaliana under control of the cauliflower mosaic virus 35S promoter. The 35S:: VlWRKY3 transgenic A. thaliana plants showed improved salt and drought stress tolerance during the germination, seedling and the mature plant stages. Various physiological traits related to abiotic stress responses were evaluated to gain further insight into the role of VlWRKY3, and it was found that abiotic stress caused less damage to the transgenic seedlings than to the wild-type (WT) plants. VlWRKY3 overexpression also resulted in altered expression levels of abiotic stress-responsive genes. Moreover, the 35S:: VlWRKY3 transgenic A. thaliana lines showed improved resistance to Golovinomyces cichoracearum, but increased susceptibility to Botrytis cinerea, compared with the WT plants. Collectively, these results indicate that VlWRKY3 plays important roles in responses to both abiotic and biotic stress, and modification of its expression may represent a strategy to enhance stress tolerance in crops.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Heterologous expression of bacterial dehydrin gene in Arabidopsis thaliana promotes abiotic stress tolerance
    Nadir Zaman Khan
    Akhtar Ali
    Waqar Ali
    Muhammad Aasim
    Tariq Khan
    Zaryab Khan
    Iqbal Munir
    Physiology and Molecular Biology of Plants, 2023, 29 : 1239 - 1246
  • [2] Heterologous expression of bacterial dehydrin gene in Arabidopsis thaliana promotes abiotic stress tolerance
    Khan, Nadir Zaman
    Ali, Akhtar
    Ali, Waqar
    Aasim, Muhammad
    Khan, Tariq
    Khan, Zaryab
    Munir, Iqbal
    PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS, 2023, 29 (09) : 1239 - 1246
  • [3] Overexpression of the Panax ginseng CyP gene enhances abiotic and biotic stress tolerance in transgenic Arabidopsis
    Sun, Tianxia
    Zhang, Miao
    Geng, Huafeng
    Wang, Yuming
    Liu, Zhimei
    Xue, Dongming
    Liu, Wei
    Li, Hongling
    Li, Shuaijun
    Hui, Ge
    Zhao, Yu
    PHYSIOLOGICAL AND MOLECULAR PLANT PATHOLOGY, 2024, 131
  • [4] A wheat lipid transfer protein (TdLTP4) promotes tolerance to abiotic and biotic stress in Arabidopsis thaliana
    Safi, Hela
    Saibi, Walid
    Alaoui, Meryem Mrani
    Hmyene, Abdelaziz
    Masmoudi, Khaled
    Hanin, Moez
    Brini, Faical
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2015, 89 : 64 - 75
  • [5] The grape VvMBF1 gene improves drought stress tolerance in transgenic Arabidopsis thaliana
    Yan, Qin
    Hou, Hongmin
    Singer, Stacy D.
    Yan, Xiaoxiao
    Guo, Rongrong
    Wang, Xiping
    PLANT CELL TISSUE AND ORGAN CULTURE, 2014, 118 (03) : 571 - 582
  • [6] The grape VvMBF1 gene improves drought stress tolerance in transgenic Arabidopsis thaliana
    Qin Yan
    Hongmin Hou
    Stacy D. Singer
    Xiaoxiao Yan
    Rongrong Guo
    Xiping Wang
    Plant Cell, Tissue and Organ Culture (PCTOC), 2014, 118 : 571 - 582
  • [7] Over-expression of a grape WRKY transcription factor gene, VlWRKY48, in Arabidopsis thaliana increases disease resistance and drought stress tolerance
    Zhao, Jiao
    Zhang, Xiuming
    Guo, Rongrong
    Wang, Yaqiong
    Guo, Chunlei
    Li, Zhi
    Chen, Zhiping
    Gao, Hua
    Wang, Xiping
    PLANT CELL TISSUE AND ORGAN CULTURE, 2018, 132 (02) : 359 - 370
  • [8] Over-expression of a grape WRKY transcription factor gene, VlWRKY48, in Arabidopsis thaliana increases disease resistance and drought stress tolerance
    Jiao Zhao
    Xiuming Zhang
    Rongrong Guo
    Yaqiong Wang
    Chunlei Guo
    Zhi Li
    Zhiping Chen
    Hua Gao
    Xiping Wang
    Plant Cell, Tissue and Organ Culture (PCTOC), 2018, 132 : 359 - 370
  • [9] AtMYB12 regulates flavonoids accumulation and abiotic stress tolerance in transgenic Arabidopsis thaliana
    Wang, Feibing
    Kong, Weili
    Wong, Gary
    Fu, Lifeng
    Peng, Rihe
    Li, Zhenjun
    Yao, Quanhong
    MOLECULAR GENETICS AND GENOMICS, 2016, 291 (04) : 1545 - 1559
  • [10] AtMYB12 regulates flavonoids accumulation and abiotic stress tolerance in transgenic Arabidopsis thaliana
    Feibing Wang
    Weili Kong
    Gary Wong
    Lifeng Fu
    Rihe Peng
    Zhenjun Li
    Quanhong Yao
    Molecular Genetics and Genomics, 2016, 291 : 1545 - 1559