High-Surface-Area Architectures for Improved Charge Transfer Kinetics at the Dark Electrode in Dye-Sensitized Solar Cells

被引:16
作者
Hoffeditz, William L. [1 ,2 ]
Katz, Michael J. [1 ]
Deria, Pravas [1 ]
Martinson, Alex B. F. [2 ,3 ]
Pellin, Michael J. [1 ,2 ,3 ]
Farha, Omar K. [1 ,5 ]
Hupp, Joseph T. [1 ,2 ,3 ,4 ]
机构
[1] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA
[2] Argonne Natl Lab, Argonne Northwestern Solar Energy Res ANSER Ctr, Argonne, IL 60439 USA
[3] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA
[4] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA
[5] King Abdulaziz Univ, Fac Sci, Dept Chem, Jeddah, Saudi Arabia
关键词
dark electrode; inverse opal; dye cell; fill factor; REDOX SHUTTLES; COUNTER ELECTRODES; TRANSFER MEDIATORS; COMPLEXES;
D O I
10.1021/am501455b
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Dye-sensitized solar cell (DSC) redox shuttles other than triiodide/iodide have exhibited significantly higher charge transfer resistances at the dark electrode. This often results in poor fill factor, a severe detriment to device performance. Rather than moving to dark electrodes of untested materials that may have higher catalytic activity for specific shuttles, the surface area of platinum dark electrodes could be increased, improving the catalytic activity by simply presenting more catalyst to the shuttle solution. A new copper-based redox shuttle that experiences extremely high charge-transfer resistance at conventional Pt dark electrodes yields cells having fill-factors of less than 0.3. By replacing the standard Pt dark electrode with an inverse opal Pt electrode fabricated via atomic layer deposition, the dark electrode surface area is boosted by ca. 50-fold. The resulting increase in interfacial electron transfer rate (decrease in charge-transfer resistance) nearly doubles the fill factor and therefore the overall energy conversion efficiency, illustrating the utility of this high-area electrode for DSCs
引用
收藏
页码:8646 / 8650
页数:5
相关论文
共 30 条
[1]   High-efficiency organic dye-sensitized mesoscopic solar cells with a copper redox shuttle [J].
Bai, Yu ;
Yu, Qingjiang ;
Cai, Ning ;
Wang, Yinghui ;
Zhang, Min ;
Wang, Peng .
CHEMICAL COMMUNICATIONS, 2011, 47 (15) :4376-4378
[2]   Tris(2-(1H-pyrazol-1-yl)pyridine)cobalt(III) as p-Type Dopant for Organic Semiconductors and Its Application in Highly Efficient Solid-State Dye-Sensitized Solar Cells [J].
Burschka, Julian ;
Dualeh, Amalie ;
Kessler, Florian ;
Baranoff, Etienne ;
Cevey-Ha, Ngoc-Le ;
Yi, Chenyi ;
Nazeeruddin, Mohammad K. ;
Graetzel, Michael .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (45) :18042-18045
[3]   Iodine/iodide-free redox shuttles for liquid electrolyte-based dye-sensitized solar cells [J].
Cong, Jiayan ;
Yang, Xichuan ;
Kloo, Lars ;
Sun, Licheng .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (11) :9180-9194
[4]  
Daeneke T, 2011, NAT CHEM, V3, P211, DOI [10.1038/nchem.966, 10.1038/NCHEM.966]
[5]   Design of Organic Dyes and Cobalt Polypyridine Redox Mediators for High-Efficiency Dye-Sensitized Solar Cells [J].
Feldt, Sandra M. ;
Gibson, Elizabeth A. ;
Gabrielsson, Erik ;
Sun, Licheng ;
Boschloo, Gerrit ;
Hagfeldt, Anders .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (46) :16714-16724
[6]   QUADRIDENTATE CHELATE COMPOUNDS .2. [J].
GOODWIN, HA ;
LIONS, F .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1960, 82 (19) :5013-5023
[7]   Dye-Sensitized Solar Cells [J].
Hagfeldt, Anders ;
Boschloo, Gerrit ;
Sun, Licheng ;
Kloo, Lars ;
Pettersson, Henrik .
CHEMICAL REVIEWS, 2010, 110 (11) :6595-6663
[8]   The end of iodide? Cobalt complex redox shuttles in DSSCs [J].
Hamann, Thomas W. .
DALTON TRANSACTIONS, 2012, 41 (11) :3111-3115
[9]   Outer-Sphere Redox Couples as Shuttles in Dye-Sensitized Solar Cells. Performance Enhancement Based on Photoelectrode Modification via Atomic Layer Deposition [J].
Hamann, Thomas W. ;
Farha, Omar K. ;
Hupp, Joseph T. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (49) :19756-19764
[10]  
Hardin BE, 2012, NAT PHOTONICS, V6, P162, DOI [10.1038/nphoton.2012.22, 10.1038/NPHOTON.2012.22]