Effects of Stroke Deviation on Aerodynamic Force Production of a Flapping Wing

被引:21
|
作者
Luo, Guoyu [1 ]
Du, Gang [2 ]
Sun, Mao [3 ]
机构
[1] Guizhou Normal Univ, Sch Mech & Elect Engn, Guiyang 550025, Guizhou, Peoples R China
[2] Beihang Univ, Sch Energy & Power Engn, Beijing 100191, Peoples R China
[3] Beihang Univ, Inst Fluid Mech, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
HOVERING INSECT FLIGHT; LEADING-EDGE VORTEX; ADVANCE RATIO; POWER REQUIREMENTS; REYNOLDS-NUMBER; VORTICES; LIFT; KINEMATICS; PERFORMANCE; GENERATION;
D O I
10.2514/1.J055739
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The effects of stroke deviation of a flapping model insect wing on its aerodynamic force production are studied by solving the Navier-Stokes equations. Stroke deviation of a flapping wing often takes the forms of various out-of-plane wing-tip trajectories that depend on the time variation of the stroke deviation angle. In the present paper, four typical wing-tip trajectories, referred to as cases A-D, were used to investigate the effect of stroke deviation by comparing the aerodynamic forces, flows, and power requirements of the flapping wings with and without stroke deviation. The stroke deviation has remarkable influences on the time course of the aerodynamic force of a flapping wing. The influences could be explained by two mechanisms: one is the added-rotation effect, which is introduced by the deviation angle of the wing; the other is the change in effective angle of attack of the wing, which is due to the angular speed of the deviation. In general, the stroke deviation only produces a small effect on the cycle-mean aerodynamic forces, because the changes due to stroke deviation could be roughly offset in a wingbeat cycle. The analysis of power requirements shows that stroke deviation will generally lead to an increase in energy consumption for insect flights, indicating that insects should have the tendency to maintain the flapping motion in a plane for hovering or low-speed flight, as is observed in nature.
引用
收藏
页码:25 / 35
页数:11
相关论文
共 50 条
  • [31] Aerodynamic force and vortex structures of flapping flexible hawkmoth-like wings
    Ryu, YeongGyun
    Chang, Jo Won
    Chung, Joon
    AEROSPACE SCIENCE AND TECHNOLOGY, 2016, 56 : 183 - 196
  • [32] Flapping Mechanism Design and Aerodynamic Analysis for the Flapping Wing Micro Air Vehicle
    Qin, Yi
    Zhang, Weiping
    Chen, Wenyuan
    Liu, Wu
    Li, Hongyi
    Chi, Pengcheng
    Meng, Kun
    Cui, Feng
    Wu, Xiaosheng
    MATERIALS PROCESSING TECHNOLOGY, PTS 1-4, 2011, 291-294 : 1543 - +
  • [33] Aerodynamic effect of stroke amplitude on hovering performance of a three-dimensional tandem flapping wing
    Tiwari, Shubham
    Thakur, D. G.
    Chandel, Sunil
    BIOINSPIRATION & BIOMIMETICS, 2025, 20 (03)
  • [34] Role of the deviation motion on the aerodynamic performance of a mosquito wing in hover
    Jung, Hyunwoo
    Oh, Sehyeong
    Choi, Haecheon
    COMPUTERS & FLUIDS, 2024, 270
  • [35] Aerodynamic explanation of flight speed limits in hawkmoth-like flapping-wing insects
    Lionetti, Seth
    Hedrick, Tyson L.
    Li, Chengyu
    PHYSICAL REVIEW FLUIDS, 2022, 7 (09)
  • [36] Numerical investigation on aerodynamic performance of a bionic flapping wing
    Chang, Xinghua
    Zhang, Laiping
    Ma, Rong
    Wang, Nianhua
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2019, 40 (11) : 1625 - 1646
  • [37] Aerodynamic performance of flapping flexible wing in insect flight
    Nakata, Toshiyuki
    COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY A-MOLECULAR & INTEGRATIVE PHYSIOLOGY, 2009, 153A (02): : S50 - S52
  • [38] Aerodynamic and Structural Studies of a Flapping Wing in Forward Flight
    Demasi, Luciano
    Santarpia, Enrico
    Dipace, Antonio
    Cavallaro, Rauno
    Gordnier, Raymond E.
    AIAA JOURNAL, 2016, 54 (09) : 2768 - 2781
  • [39] Effect of Stroke Deviation on Forward Flapping Flight
    Viswanath, Kamal
    Tafti, Danesh K.
    AIAA JOURNAL, 2013, 51 (01) : 145 - 160
  • [40] Proximity to the water surface markedly enhances the force production on underwater flapping wings
    Bhat, Shantanu S.
    Medina, Albert
    Tian, Fang-Bao
    Young, John
    Lai, Joseph C. S.
    Ravi, Sridhar
    PLOS ONE, 2024, 19 (03):