Persistence of Motor Memories Reflects Statistics of the Learning Event

被引:79
作者
Huang, Vincent S. [1 ]
Shadmehr, Reza [1 ]
机构
[1] Johns Hopkins Sch Med, Dept Biomed Engn, Lab Computat Motor Control, Baltimore, MD USA
关键词
ADAPTATION; ERROR; DYNAMICS; CALIBRATION; MODEL; TASK; ARM;
D O I
10.1152/jn.00237.2009
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
statistics of the learning event. J Neurophysiol 102: 931-940, 2009. First published June 3, 2009; doi:10.1152/jn.00237.2009. Learning to control a new tool (i.e., a novel environment) produces an internal model, i.e., a motor memory that allows the brain to implicitly predict the behavior of the tool. Data from a wide array of experiments suggest that formation of motor memory is not a single process, but one that is due to multiple adaptive processes with different time constants. Here we asked whether these time constants are invariant or are they influenced by the statistics of the learning event. To measure the time constants, we controlled the statistics of the learning event in a reaching task and then assayed the decay rates of motor output in a set of trials in which errors were effectively removed. We found that prior experience with a rapid change in the environment increased the decay rate of memories acquired later in response to a gradual change in the same environment. Prior experience in an environment that changed gradually reduced the decay rates of memories acquired later in response to a rapid change in that same environment. Indeed we found that by manipulating the prior statistics of the learning experience, we could readily alter the decay rates of a given motor memory. This suggests that time scales of processes that support motor memory are not constant. Rather decay of motor memory is the brain's implicit estimate of how likely it is that the environment will change with time. During motor learning, prior statistics that suggest changes are likely to be permanent result in slowly decaying memories, whereas prior statistics that suggest changes are transient result in rapidly decaying memories.
引用
收藏
页码:931 / 940
页数:10
相关论文
共 25 条
[1]  
Baddeley RJ, 2003, J NEUROSCI, V23, P3066
[2]   The central nervous system stabilizes unstable dynamics by learning optimal impedance [J].
Burdet, E ;
Osu, R ;
Franklin, DW ;
Milner, TE ;
Kawato, M .
NATURE, 2001, 414 (6862) :446-449
[3]   The statistical determinants of adaptation rate in human reaching [J].
Burge, Johannes ;
Ernst, Marc O. ;
Banks, Martin S. .
JOURNAL OF VISION, 2008, 8 (04)
[4]   Calibration of visually guided reaching is driven by error-corrective learning and internal dynamics [J].
Cheng, Sen ;
Sabes, Philip N. .
JOURNAL OF NEUROPHYSIOLOGY, 2007, 97 (04) :3057-3069
[5]   Consolidation patterns of human motor memory [J].
Criscimagna-Hemminger, Sarah E. ;
Shadmehr, Reza .
JOURNAL OF NEUROSCIENCE, 2008, 28 (39) :9610-9618
[6]  
Donchin O, 2003, J NEUROSCI, V23, P9032
[7]   Motor adaptation as a greedy optimization of error and effort [J].
Emken, Jeremy L. ;
Benitez, Raul ;
Sideris, Athanasios ;
Bobrow, James E. ;
Reinkensmeyer, David J. .
JOURNAL OF NEUROPHYSIOLOGY, 2007, 97 (06) :3997-4006
[8]   Spontaneous recovery of motor memory during saccade adaptation [J].
Ethier, Vincent ;
Zee, David S. ;
Shadmehr, Reza .
JOURNAL OF NEUROPHYSIOLOGY, 2008, 99 (05) :2577-2583
[9]   Two waves of a long-lasting aftereffect of prism adaptation measured over 7 days [J].
Hatada, Y ;
Miall, RC ;
Rossetti, Y .
EXPERIMENTAL BRAIN RESEARCH, 2006, 169 (03) :417-426
[10]   Active learning: Learning a motor skill without a coach [J].
Huang, Vincent S. ;
Shadmehr, Reza ;
Diedrichsen, Joern .
JOURNAL OF NEUROPHYSIOLOGY, 2008, 100 (02) :879-887