Partial integrability of 3d Bohmian trajectories

被引:8
作者
Contopoulos, G. [1 ]
Tzemos, A. C. [1 ]
Efthymiopoulos, C. [1 ]
机构
[1] Acad Athens, Res Ctr Astron & Appl Math, Soranou Efessiou 4, GR-11527 Athens, Greece
关键词
Bohmian quantum mechanics; quantum chaos; nonlinear dynamics; SUBQUANTUM H-THEOREM; SUGGESTED INTERPRETATION; QUANTUM-MECHANICS; HIDDEN-VARIABLES; SIGNAL-LOCALITY; CHAOS; UNCERTAINTY; MOTION; ORIGIN; TERMS;
D O I
10.1088/1751-8121/aa685d
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we study the integrability of 3d Bohmian trajectories of a system of quantum harmonic oscillators. We show that the initial choice of quantum numbers is responsible for the existence (or not) of an integral of motion which confines the trajectories on certain invariant surfaces. We give a few examples of orbits in cases where there is or there is not an integral and make some comments on the impact of partial integrability in Bohmian Mechanics. Finally, we make a connection between our present results for the integrability in the 3d case and analogous results found in the 2d and 4d cases.
引用
收藏
页数:13
相关论文
共 21 条
  • [1] [Anonymous], 1927, CR HEBD ACAD SCI
  • [2] Applied Bohmian mechanics
    Benseny, Albert
    Albareda, Guillermo
    Sanz, Angel S.
    Mompart, Jordi
    Oriols, Xavier
    [J]. EUROPEAN PHYSICAL JOURNAL D, 2014, 68 (10)
  • [3] BOHM D, 1952, PHYS REV, V85, P166, DOI 10.1103/PhysRev.85.166
  • [4] A SUGGESTED INTERPRETATION OF THE QUANTUM THEORY IN TERMS OF HIDDEN VARIABLES .2.
    BOHM, D
    [J]. PHYSICAL REVIEW, 1952, 85 (02): : 180 - 193
  • [5] Order in de Broglie-Bohm quantum mechanics
    Contopoulos, G.
    Delis, N.
    Efthymiopoulos, C.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (16)
  • [6] Ordered and chaotic Bohmian trajectories
    Contopoulos, George
    Efthymiopoulos, Christos
    [J]. CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2008, 102 (1-3) : 219 - 239
  • [7] De Broglie L, 1927, CR HEBD ACAD SCI, V184, P283
  • [8] Durr D, 2009, BOHMIAN M ECH PHYS M
  • [9] Nodal points and the transition from ordered to chaotic Bohmian trajectories
    Efthymiopoulos, C.
    Kalapotharakos, C.
    Contopoulos, G.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (43) : 12945 - 12972
  • [10] Chaos in Bohmian quantum mechanics
    Efthymiopoulos, C
    Contopoulos, G
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (08): : 1819 - 1852