Metabolic regulation of transcription through compartmentalized NAD+ biosynthesis

被引:191
作者
Ryu, Keun Woo [1 ,2 ,3 ]
Nandu, Tulip [1 ,2 ]
Kim, Jiyeon [4 ]
Challa, Sridevi [1 ,2 ]
DeBerardinis, Ralph J. [4 ,5 ,6 ]
Kraus, W. Lee [1 ,2 ,3 ]
机构
[1] Univ Texas Southwestern Med Ctr Dallas, Cecil H & Ida Green Ctr Reprod Biol Sci, Lab Signaling & Gene Regulat, Dallas, TX 75390 USA
[2] Univ Texas Southwestern Med Ctr Dallas, Dept Obstet & Gynecol, Basic Res Div, Dallas, TX 75390 USA
[3] Univ Texas Southwestern Med Ctr Dallas, Grad Sch Biomed Sci, Program Genet Dev & Dis, Dallas, TX 75390 USA
[4] Univ Texas Southwestern Med Ctr Dallas, Childrens Med Ctr, Res Inst, Dallas, TX 75390 USA
[5] Univ Texas Southwestern Med Ctr Dallas, Dept Pediat, Dallas, TX 75390 USA
[6] Univ Texas Southwestern Med Ctr Dallas, McDermott Ctr Human Growth & Dev, Dallas, TX 75390 USA
关键词
GENE-EXPRESSION; HISTONE ACETYLATION; NUCLEAR; POLY(ADP-RIBOSE); PARP-1; BINDING; CELLS; DIFFERENTIATION; ADIPOGENESIS; ENZYMES;
D O I
10.1126/science.aan5780
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
NAD(+) (nicotinamide adenine dinucleotide in its oxidized state) is an essential molecule for a variety of physiological processes. It is synthesized in distinct subcellular compartments by three different synthases (NMNAT-1, -2, and -3). We found that compartmentalized NAD(+) synthesis by NMNATs integrates glucose metabolism and adipogenic transcription during adipocyte differentiation. Adipogenic signaling rapidly induces cytoplasmic NMNAT-2, which competes with nuclear NMNAT-1 for the common substrate, nicotinamide mononucleotide, leading to a precipitous reduction in nuclear NAD(+) levels. This inhibits the catalytic activity of poly[adenosine diphosphate (ADP)-ribose] polymerase-1 (PARP-1), a NAD(+)-dependent enzyme that represses adipogenic transcription by ADP-ribosylating the adipogenic transcription factor C/EBPb. Reversal of PARP-1-mediated repression by NMNAT-2-mediated nuclear NAD(+) depletion in response to adipogenic signals drives adipogenesis. Thus, compartmentalized NAD(+) synthesis functions as an integrator of cellular metabolism and signal-dependent transcriptional programs.
引用
收藏
页数:13
相关论文
共 55 条
  • [1] [Anonymous], 2015, FASTQC
  • [2] The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans
    Ardlie, Kristin G.
    DeLuca, David S.
    Segre, Ayellet V.
    Sullivan, Timothy J.
    Young, Taylor R.
    Gelfand, Ellen T.
    Trowbridge, Casandra A.
    Maller, Julian B.
    Tukiainen, Taru
    Lek, Monkol
    Ward, Lucas D.
    Kheradpour, Pouya
    Iriarte, Benjamin
    Meng, Yan
    Palmer, Cameron D.
    Esko, Tonu
    Winckler, Wendy
    Hirschhorn, Joel N.
    Kellis, Manolis
    MacArthur, Daniel G.
    Getz, Gad
    Shabalin, Andrey A.
    Li, Gen
    Zhou, Yi-Hui
    Nobel, Andrew B.
    Rusyn, Ivan
    Wright, Fred A.
    Lappalainen, Tuuli
    Ferreira, Pedro G.
    Ongen, Halit
    Rivas, Manuel A.
    Battle, Alexis
    Mostafavi, Sara
    Monlong, Jean
    Sammeth, Michael
    Mele, Marta
    Reverter, Ferran
    Goldmann, Jakob M.
    Koller, Daphne
    Guigo, Roderic
    McCarthy, Mark I.
    Dermitzakis, Emmanouil T.
    Gamazon, Eric R.
    Im, Hae Kyung
    Konkashbaev, Anuar
    Nicolae, Dan L.
    Cox, Nancy J.
    Flutre, Timothee
    Wen, Xiaoquan
    Stephens, Matthew
    [J]. SCIENCE, 2015, 348 (6235) : 648 - 660
  • [3] Metabolic Enzymes Moonlighting in the Nucleus: Metabolic Regulation of Gene Transcription
    Boukouris, Aristeidis E.
    Zervopoulos, Sotirios D.
    Michelakis, Evangelos D.
    [J]. TRENDS IN BIOCHEMICAL SCIENCES, 2016, 41 (08) : 712 - 730
  • [4] Acetate Recapturing by Nuclear Acetyl-CoA Synthetase 2 Prevents Loss of Histone Acetylation during Oxygen and Serum Limitation
    Bulusu, Vinay
    Tumanov, Sergey
    Michalopoulou, Evdokia
    van den Broek, Niels J.
    MacKay, Gillian
    Nixon, Colin
    Dhayade, Sandeep
    Schug, Zachary T.
    Voorde, Johan Vande
    Blyth, Karen
    Gottlieb, Eyal
    Vazquez, Alexei
    Kamphorst, Jurre J.
    [J]. CELL REPORTS, 2017, 18 (03): : 647 - 658
  • [5] Biosensor reveals multiple sources for mitochondrial NAD+
    Cambronne, Xiaolu A.
    Stewart, Melissa L.
    Kim, DongHo
    Jones-Brunette, Amber M.
    Morgan, Rory K.
    Farrens, David L.
    Cohen, Michael S.
    Goodman, Richard H.
    [J]. SCIENCE, 2016, 352 (6292) : 1474 - 1477
  • [6] Pyruvate carboxylase is required for glutamine-independent growth of tumor cells
    Cheng, Tzuling
    Sudderth, Jessica
    Yang, Chendong
    Mullen, Andrew R.
    Jin, Eunsook S.
    Mates, Jose M.
    DeBerardinis, Ralph J.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (21) : 8674 - 8679
  • [7] The NAD metabolome - a key determinant of cancer cell biology
    Chiarugi, Alberto
    Dolle, Christian
    Felici, Roberta
    Ziegler, Mathias
    [J]. NATURE REVIEWS CANCER, 2012, 12 (11) : 741 - 752
  • [8] Forming functional fat: a growing understanding of adipocyte differentiation
    Cristancho, Ana G.
    Lazar, Mitchell A.
    [J]. NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2011, 12 (11) : 722 - 734
  • [9] Kinetic and Structural Basis for Acyl-Group Selectivity and NAD+ Dependence in Sirtuin-Catalyzed Deacylation
    Feldman, Jessica L.
    Dittenhafer-Reed, Kristin E.
    Kudo, Norio
    Thelen, Julie N.
    Ito, Akihiro
    Yoshida, Minoru
    Denu, John M.
    [J]. BIOCHEMISTRY, 2015, 54 (19) : 3037 - 3050
  • [10] New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs
    Gibson, Bryan A.
    Kraus, W. Lee
    [J]. NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2012, 13 (07) : 411 - 424