The structure of C1 spline spaces on freudenthal partitions

被引:2
作者
Hecklin, G. [1 ]
Nuernberger, G. [1 ]
Zeilfelder, F. [1 ]
机构
[1] Univ Mannheim, Inst Math, D-68131 Mannheim, Germany
关键词
trivariate splines; Freudenthal partitions; C-1 smoothness conditions; minimal determining sets; Bernstein-Bezier techniques; dimension of spline spaces;
D O I
10.1137/040614980
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze the structure of trivariate C-1 splines on uniform tetrahedral partitions Delta. The Freudenthal partitions Delta are obtained from uniform cube partitions by using three planes with a common line to subdivide every cube into six tetrahedra. This is a natural three-dimensional generalization of the well-known three-directional mesh in the plane. By using Bernstein-Bezier techniques, we construct minimal determining sets for C-1 spline spaces on Delta of arbitrary degree and give explicit formulae for the dimension of the spaces.
引用
收藏
页码:347 / 367
页数:21
相关论文
共 43 条
[1]   Efficient subdivision of finite-element datasets into consistent tetrahedra [J].
Albertelli, G ;
Crawfis, RA .
VISUALIZATION '97 - PROCEEDINGS, 1997, :213-219
[2]   AN EXPLICIT BASIS FOR C1 QUARTIC BIVARIATE SPLINES [J].
ALFELD, P ;
PIPER, B ;
SCHUMAKER, LL .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1987, 24 (04) :891-911
[3]   THE GENERIC DIMENSION OF THE SPACE OF C1 SPLINES OF DEGREE D-GREATER-THAN-OR-EQUAL-TO-8 ON TETRAHEDRAL DECOMPOSITIONS [J].
ALFELD, P ;
SCHUMAKER, LL ;
WHITELEY, W .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1993, 30 (03) :889-920
[4]   Smooth macro-elements based on Powell-Sabin triangle splits [J].
Alfeld, P ;
Schumaker, LL .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2002, 16 (01) :29-46
[5]   Smooth macro-elements based on Clough-Tocher triangle splits [J].
Alfeld, P ;
Schumaker, LL .
NUMERISCHE MATHEMATIK, 2002, 90 (04) :597-616
[6]   ON DIMENSION AND EXISTENCE OF LOCAL BASES FOR MULTIVARIATE SPLINE SPACES [J].
ALFELD, P ;
SCHUMAKER, LL ;
SIRVENT, M .
JOURNAL OF APPROXIMATION THEORY, 1992, 70 (02) :243-264
[7]  
Alfeld P., 1984, Computer-Aided Geometric Design, V1, P169, DOI 10.1016/0167-8396(84)90029-3
[8]   Simplicial subdivisions and sampling artifacts [J].
Carr, H ;
Möller, T ;
Snoeyink, J .
VISUALIZATION 2001, PROCEEDINGS, 2001, :99-106
[9]  
CHUI CK, 1988, CBMS NSF REGIONAL C, P189
[10]   Scattered data fitting by direct extension of local polynomials to bivariate splines [J].
Davydov, O ;
Zeilfelder, F .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2004, 21 (3-4) :223-271