Entanglement typicality

被引:36
作者
Dahlsten, Oscar C. O. [1 ]
Lupo, Cosmo [2 ]
Mancini, Stefano [3 ,4 ]
Serafini, Alessio [5 ,6 ]
机构
[1] Univ Oxford, Clarendon Lab, Oxford OX1 3PU, England
[2] MIT, Elect Res Lab, Cambridge, MA 02139 USA
[3] Univ Camerino, Sch Sci & Technol, I-62032 Camerino, Italy
[4] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy
[5] UCL, Dept Phys & Astron, London WC1E 6BT, England
[6] Scuola Normale Super Pisa, I-56126 Pisa, Italy
关键词
quantum information; entanglement; quantum statistical mechanics; AVERAGE ENTROPY; STATISTICAL-MECHANICS; QUANTUM INFORMATION; PAGES CONJECTURE; SUBSYSTEM; STATES; MATRICES; PROOF;
D O I
10.1088/1751-8113/47/36/363001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We provide a summary of both seminal and recent results on typical entanglement. By 'typical' values of entanglement, we refer here to values of entanglement quantifiers that (given a reasonable measure on the manifold of states) appear with arbitrarily high probability for quantum systems of sufficiently high dimensionality. We shall focus on pure states and work within the Haar measure framework for discrete quantum variables, where we report on results concerning the average von Neumann and linear entropies as well as arguments implying the typicality of such values in the asymptotic limit. We then proceed to discuss the generation of typical quantum states with random circuitry. Different phases of entanglement, and the connection between typical entanglement and thermodynamics are discussed. We also cover approaches to measures on the non-compact set of Gaussian states of continuous variable quantum systems.
引用
收藏
页数:22
相关论文
共 66 条
[1]   Black holes: complementarity or firewalls? [J].
Almheiri, Ahmed ;
Marolf, Donald ;
Polchinski, Joseph ;
Sully, James .
JOURNAL OF HIGH ENERGY PHYSICS, 2013, (02)
[2]   Entanglement Thresholds for Random Induced States [J].
Aubrun, Guillaume ;
Szarek, Stanislaw J. ;
Ye, Deping .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2014, 67 (01) :129-171
[3]   Phase transitions for random states and a semicircle law for the partial transpose [J].
Aubrun, Guillaume ;
Szarek, Stanislaw J. ;
Ye, Deping .
PHYSICAL REVIEW A, 2012, 85 (03)
[4]   COMMUNICATION VIA ONE-PARTICLE AND 2-PARTICLE OPERATORS ON EINSTEIN-PODOLSKY-ROSEN STATES [J].
BENNETT, CH ;
WIESNER, SJ .
PHYSICAL REVIEW LETTERS, 1992, 69 (20) :2881-2884
[5]   TELEPORTING AN UNKNOWN QUANTUM STATE VIA DUAL CLASSICAL AND EINSTEIN-PODOLSKY-ROSEN CHANNELS [J].
BENNETT, CH ;
BRASSARD, G ;
CREPEAU, C ;
JOZSA, R ;
PERES, A ;
WOOTTERS, WK .
PHYSICAL REVIEW LETTERS, 1993, 70 (13) :1895-1899
[6]  
Brandao F. G. S. L., 2012, ARXIV12080692
[7]  
Braunstein S L, 2013, ARXIV13111326
[8]   Better Late than Never: Information Retrieval from Black Holes [J].
Braunstein, Samuel L. ;
Pirandola, Stefano ;
Zyczkowski, Karol .
PHYSICAL REVIEW LETTERS, 2013, 110 (10)
[9]   Squeezing as an irreducible resource [J].
Braunstein, SL .
PHYSICAL REVIEW A, 2005, 71 (05)
[10]   Quantum information with continuous variables [J].
Braunstein, SL ;
van Loock, P .
REVIEWS OF MODERN PHYSICS, 2005, 77 (02) :513-577