A mixed finite element method for fourth order eigenvalue problems

被引:1
|
作者
Nataraj, Neela [1 ]
机构
[1] Indian Inst Technol, Dept Math, Bombay 400076, Maharashtra, India
关键词
Mixed finite element method; Eigenvalues; Eigenvectors; Lagrange multiplier; Orthotropic problem; Vibration analysis; PLATE-BENDING PROBLEMS; IMPLEMENTATION; APPROXIMATIONS; CONVERGENCE;
D O I
10.1016/j.amc.2009.02.050
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A mixed finite element method for approximating eigenpairs of IV order elliptic eigenvalue problems with Dirichlet boundary conditions has been given. The method can be applied to the vibration analysis of anisotropic/orthotropic/isotropic/biharmonic plates. Computer implementation procedures for this mixed method are given along with the results of numerical experiments. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:60 / 72
页数:13
相关论文
共 50 条
  • [1] A parallel mixed finite element implementation for approximation of eigenvalues and eigenvectors of fourth-order eigenvalue problems
    Kulshreshtha, K
    Nataraj, N
    JOURNAL OF SOUND AND VIBRATION, 2005, 285 (4-5) : 1242 - 1254
  • [2] A mixed immersed finite element method for fourth-order interface problems on surfaces
    Chen, Jiaqi
    Xiao, Xufeng
    Feng, Xinlong
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 176 : 122 - 139
  • [3] On the Finite Element Approximation of Fourth-Order Singularly Perturbed Eigenvalue Problems
    Roos, Hans-Goerg
    Savvidou, Despo
    Xenophontos, Christos
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2022, 22 (02) : 465 - 476
  • [4] A C0 linear finite element method for two fourth-order eigenvalue problems
    Chen, Hongtao
    Guo, Hailong
    Zhang, Zhimin
    Zou, Qingsong
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2017, 37 (04) : 2120 - 2138
  • [5] Optimal Convergence Analysis of a Mixed Finite Element Method for Fourth-Order Elliptic Problems
    Yan, Yue
    Li, Weijia
    Chen, Wenbin
    Wang, Yanqiu
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2018, 24 (02) : 510 - 530
  • [6] A posteriori error estimator for eigenvalue problems by mixed finite element method
    Jia ShangHui
    Chen HongTao
    Xie HeHu
    SCIENCE CHINA-MATHEMATICS, 2013, 56 (05) : 887 - 900
  • [7] A posteriori error estimator for eigenvalue problems by mixed finite element method
    ShangHui Jia
    HongTao Chen
    HeHu Xie
    Science China Mathematics, 2013, 56 : 887 - 900
  • [8] A posteriori error estimator for eigenvalue problems by mixed finite element method
    JIA ShangHui
    CHEN HongTao
    XIE HeHu
    Science China(Mathematics), 2013, 56 (05) : 888 - 901
  • [9] Mixed Finite Element Methods for Fourth Order Elliptic Optimal Control Problems
    Manickam, K.
    Prakash, P.
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2016, 9 (04) : 528 - 548
  • [10] Primal hybrid finite element method for fourth order parabolic problems
    Acharya, Sanjib Kumar
    Porwal, Kamana
    APPLIED NUMERICAL MATHEMATICS, 2020, 152 : 12 - 28