Joint sparse canonical correlation analysis for detecting differential imaging genetics modules

被引:77
作者
Fang, Jian [1 ,2 ]
Lin, Dongdong [3 ]
Schulz, S. Charles [4 ]
Xu, Zongben [2 ]
Calhoun, Vince D. [3 ]
Wang, Yu-Ping [1 ]
机构
[1] Tulane Univ, Dept Biomed Engn, New Orleans, LA 70118 USA
[2] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China
[3] Univ New Mexico, Dept Elect & Comp Engn, Mind Res Network, Albuquerque, NM 87131 USA
[4] Univ Minnesota, Dept Psychiat, Minneapolis, MN 55455 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
PARTIAL LEAST-SQUARES; SCHIZOPHRENIA; BRAIN; EXPRESSION; REGRESSION; ASSOCIATIONS; METAANALYSIS; INHIBITION; PHENOTYPES; NUMBER;
D O I
10.1093/bioinformatics/btw485
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Imaging genetics combines brain imaging and genetic information to identify the relationships between genetic variants and brain activities. When the data samples belong to different classes (e.g. disease status), the relationships may exhibit class-specific patterns that can be used to facilitate the understanding of a disease. Conventional approaches often perform separate analysis on each class and report the differences, but ignore important shared patterns. Results: In this paper, we develop a multivariate method to analyze the differential dependency across multiple classes. We propose a joint sparse canonical correlation analysis method, which uses a generalized fused lasso penalty to jointly estimate multiple pairs of canonical vectors with both shared and class-specific patterns. Using a data fusion approach, the method is able to detect differentially correlated modules effectively and efficiently. The results from simulation studies demonstrate its higher accuracy in discovering both common and differential canonical correlations compared to conventional sparse CCA. Using a schizophrenia dataset with 92 cases and 116 controls including a single nucleotide polymorphism (SNP) array and functional magnetic resonance imaging data, the proposed method reveals a set of distinct SNP-voxel interaction modules for the schizophrenia patients, which are verified to be both statistically and biologically significant.
引用
收藏
页码:3480 / 3488
页数:9
相关论文
共 47 条
[1]  
Andrienko G., 2013, Introduction, P1
[2]  
[Anonymous], 1985, Encyclopedia of Statistical Sciences
[3]  
Baron D., 2005, TECHNICAL REPORT
[4]   Joint analysis of expression profiles from multiple cancers improves the identification of microRNA-gene interactions [J].
Chen, Xiaowei ;
Slack, Frank J. ;
Zhao, Hongyu .
BIOINFORMATICS, 2013, 29 (17) :2137-2145
[5]   Sparse partial least squares regression for simultaneous dimension reduction and variable selection [J].
Chun, Hyonho ;
Keles, Suenduez .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2010, 72 :3-25
[6]   The joint graphical lasso for inverse covariance estimation across multiple classes [J].
Danaher, Patrick ;
Wang, Pei ;
Witten, Daniela M. .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2014, 76 (02) :373-397
[7]   Common Copy Number Variation Detection From Multiple Sequenced Samples [J].
Duan, Junbo ;
Deng, Hong-Wen ;
Wang, Yu-Ping .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2014, 61 (03) :928-937
[8]   CNTNAP2 gene dosage variation is associated with schizophrenia and epilepsy [J].
Friedman, J. I. ;
Vrijenhoek, T. ;
Markx, S. ;
Janssen, I. M. ;
Van der Vliet, W. A. ;
Faas, B. H. W. ;
Knoers, N. V. ;
Cahn, W. ;
Kahn, R. S. ;
Edelmann, L. ;
Davis, K. L. ;
Silverman, J. M. ;
Brunner, H. G. ;
Van Kessel, A. Geurts ;
Wijmenga, C. ;
Ophoff, R. A. ;
Veltman, J. A. .
MOLECULAR PSYCHIATRY, 2008, 13 (03) :261-266
[9]   The MCIC Collection: A Shared Repository of Multi-Modal, Multi-Site Brain Image Data from a Clinical Investigation of Schizophrenia [J].
Gollub, Randy L. ;
Shoemaker, Jody M. ;
King, Margaret D. ;
White, Tonya ;
Ehrlich, Stefan ;
Sponheim, Scott R. ;
Clark, Vincent P. ;
Turner, Jessica A. ;
Mueller, Bryon A. ;
Magnotta, Vince ;
O'Leary, Daniel ;
Ho, Beng C. ;
Brauns, Stefan ;
Manoach, Dara S. ;
Seidman, Larry ;
Bustillo, Juan R. ;
Lauriello, John ;
Bockholt, Jeremy ;
Lim, Kelvin O. ;
Rosen, Bruce R. ;
Schulz, S. Charles ;
Calhoun, Vince D. ;
Andreasen, Nancy C. .
NEUROINFORMATICS, 2013, 11 (03) :367-388
[10]   Comparison of variants of canonical correlation analysis and partial least squares for combined analysis of MRI and genetic data [J].
Grellmann, Claudia ;
Bitzer, Sebastian ;
Neumann, Jane ;
Westlye, Lars T. ;
Andreassen, Ole A. ;
Villringer, Arno ;
Horstmann, Annette .
NEUROIMAGE, 2015, 107 :289-310