A bound on the total variation of the conserved quantities for solutions of a general resonant nonlinear balance law

被引:27
作者
Hong, J [1 ]
Temple, B
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[2] Univ Calif Davis, Dept Math, Davis, CA 95616 USA
关键词
shock waves; resonance; Glimm scheme; balance laws;
D O I
10.1137/S0036139902405249
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a new potential interaction functional and use it to define a new Glimm-type functional that bounds the total variation of the conserved quantities at time t > 0 by the total variation at time t = 0+ in Glimm approximate solutions of a general resonant nonlinear balance law.
引用
收藏
页码:819 / 857
页数:39
相关论文
共 26 条
[1]  
[Anonymous], THESIS U CALIFORNIA
[2]  
[Anonymous], 1970, MATH USSR SB
[3]  
CHEN G, 1996, COMMUN MATH PHYS, V179, P153
[4]  
Courant R., 1948, Supersonic Flow and Shock Waves
[5]  
DalMaso G, 1995, J MATH PURE APPL, V74, P483
[7]  
Godunov SK., 1959, MAT SBORNIK, V89, P271
[8]   THE RIEMANN PROBLEM NEAR A HYPERBOLIC SINGULARITY - THE CLASSIFICATION OF SOLUTIONS OF QUADRATIC RIEMANN PROBLEMS .1. [J].
ISAACSON, E ;
MARCHESIN, D ;
PLOHR, B ;
TEMPLE, B .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1988, 48 (05) :1009-1032
[9]   NONLINEAR RESONANCE IN SYSTEMS OF CONSERVATION-LAWS [J].
ISAACSON, E ;
TEMPLE, B .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1992, 52 (05) :1260-1278
[10]   THE STRUCTURE OF ASYMPTOTIC STATES IN A SINGULAR SYSTEM OF CONSERVATION-LAWS [J].
ISAACSON, E ;
TEMPLE, B .
ADVANCES IN APPLIED MATHEMATICS, 1990, 11 (02) :205-219