Maps preserving product XY-YX* on factor von Neumann algebras

被引:82
作者
Cui, Jianlian [1 ]
Li, Chi-Kwong [2 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[2] Coll William & Mary, Dept Math, Williamsburg, VA 23185 USA
基金
美国国家科学基金会; 高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
New products; Isomorphism; von Neumann algebras; QUADRATIC FUNCTIONALS; OPERATOR-ALGEBRAS; DERIVATIONS;
D O I
10.1016/j.laa.2009.03.036
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A and B be two factor von Neumann algebras. For A, B is an element of A. define by [A, B](*) = AB - BA* the new product of A and B. In this paper, we prove that a nonlinear bijective map phi : A -> B satisfies phi([A, B](*)) = [phi(A), phi(B)](*) for all A, B is an element of A if and only phi is a *-ring isomorphism. In particular, if the von Neumann algebras A and B are type I factors, then phi is a unitary isomorphism or a conjugate unitary isomorphism. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:833 / 842
页数:10
相关论文
共 9 条
[1]  
AN R, CHARACTERIZ IN PRESS
[2]  
[Anonymous], 1981, VONNEUMANN ALGEBRAS
[3]  
Bresar M, 2000, PUBL MATH-DEBRECEN, V57, P121
[4]   OPERATOR ALGEBRAS GENERATED BY PROJECTIONS [J].
FILLMORE, PA ;
TOPPING, DM .
DUKE MATHEMATICAL JOURNAL, 1967, 34 (02) :333-&
[5]   A condition for a subspace of B(H) to be an ideal [J].
Molnar, L .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1996, 235 (235) :229-234
[6]  
SEMRL P, 1991, STUD MATH, V97, P157
[7]   QUADRATIC AND QUASI-QUADRATIC FUNCTIONALS [J].
SEMRL, P .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 119 (04) :1105-1113
[9]  
Semrl P., 1990, Colloq. Math., V59, P241