Super-Resolution Reconstruction of Cytoskeleton Image Based on Deep Learning

被引:11
作者
Hu Fen [1 ]
Lin Yang [2 ]
Hou Mengdi [1 ]
Hu Haofeng [2 ]
Pan Leiting [1 ,3 ,4 ]
Liu Tiegen [2 ]
Xu Jingjun [1 ]
机构
[1] Nankai Univ, Sch Phys, TEDA Appl Phys Sch,Minist Educ, Key Lab Weak Light Nonlinear Photon, Tianjin 300071, Peoples R China
[2] Tianjin Univ, Sch Precis Instrument & Opto Elect Engn, Key Lab Opto Elect Informat Technol, Minist Educ, Tianjin 300072, Peoples R China
[3] Nankai Univ, Coll Life Sci, State Key Lab Med Chem Biol, Tianjin 300071, Peoples R China
[4] Shanxi Univ, Collaborat Innovat Ctr Extreme Opt, Taiyuan 030006, Shanxi, Peoples R China
关键词
image processing; deep learning; image super-resolution reconstruction; stochastic optical reconstruction microscopy; cytoskeleton; LOCALIZATION MICROSCOPY; RESOLUTION; REVEALS; ACTIN;
D O I
10.3788/AOS202040.2410001
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Super-resolution microscopy techniques invented at the beginning of the 21st century provide unprecedented access to life science researches owing to its impressive ability of studying subcellular structures at the micrometer and nanometer scales. However, these techniques often require high cost of time and money. Recently, many researchers work on super-resolution image reconstruction algorithms based on deep learning. Herein, we obtained the super-resolution images of cell microtubule cytoskeletons by the self-built stochastic optical reconstruction microscopy (STORM), and then the bilinear interpolation down-sampling method was used to obtain the low-resolution input atlas. The traditional cubic spline interpolation method and the enhanced depth super-resolution neural network were used for learning and training to realize the super-resolution reconstruction of the low-resolution image. Results show that the effects of all kinds of down-sampling images reconstructed by deep learning are better than those obtained by traditional interpolation method; the super-resolution images of microtubule skeletons obtained by double down-sampling and experiments are comparable in subjective and objective evaluation indexes. Based on the enhanced depth super-resolution neural network, the super-resolution reconstruction of cytoskeleton images is expected to provide a simple, effective, and cost-effective imaging method, which can be applied to the rapid prediction of cytoskeleton super-microstructures.
引用
收藏
页数:8
相关论文
共 35 条
[1]   Imaging intracellular fluorescent proteins at nanometer resolution [J].
Betzig, Eric ;
Patterson, George H. ;
Sougrat, Rachid ;
Lindwasser, O. Wolf ;
Olenych, Scott ;
Bonifacino, Juan S. ;
Davidson, Michael W. ;
Lippincott-Schwartz, Jennifer ;
Hess, Harald F. .
SCIENCE, 2006, 313 (5793) :1642-1645
[2]   Next-Generation Machine Learning for Biological Networks [J].
Camacho, Diogo M. ;
Collins, Katherine M. ;
Powers, Rani K. ;
Costello, James C. ;
Collins, James J. .
CELL, 2018, 173 (07) :1581-1592
[3]   Machine learning and the physical sciences [J].
Carleo, Giuseppe ;
Cirac, Ignacio ;
Cranmer, Kyle ;
Daudet, Laurent ;
Schuld, Maria ;
Tishby, Naftali ;
Vogt-Maranto, Leslie ;
Zdeborova, Lenka .
REVIEWS OF MODERN PHYSICS, 2019, 91 (04)
[4]   In Silico Labeling: Predicting Fluorescent Labels in Unlabeled Images [J].
Christiansen, Eric M. ;
Yang, Samuel J. ;
Ando, D. Michael ;
Javaherian, Ashkan ;
Skibinski, Gaia ;
Lipnick, Scott ;
Mount, Elliot ;
O'Neil, Alison ;
Shah, Kevan ;
Lee, Alicia K. ;
Goyal, Piyush ;
Fedus, William ;
Poplin, Ryan ;
Esteva, Andre ;
Berndl, Marc ;
Rubin, Lee L. ;
Nelson, Philip ;
Finkbeiner, Steven .
CELL, 2018, 173 (03) :792-+
[5]   Learning a Deep Convolutional Network for Image Super-Resolution [J].
Dong, Chao ;
Loy, Chen Change ;
He, Kaiming ;
Tang, Xiaoou .
COMPUTER VISION - ECCV 2014, PT IV, 2014, 8692 :184-199
[6]   Single Image Super-Resolution Based on Multi-Scale Competitive Convolutional Neural Network [J].
Du, Xiaofeng ;
Qu, Xiaobo ;
He, Yifan ;
Guo, Di .
SENSORS, 2018, 18 (03)
[7]   Cell mechanics and the cytoskeleton [J].
Fletcher, Daniel A. ;
Mullins, Dyche .
NATURE, 2010, 463 (7280) :485-492
[8]   Deep learning enhancement of infrared face images using generative adversarial networks [J].
Guei, Axel-Christian ;
Akhloufi, Moulay .
APPLIED OPTICS, 2018, 57 (18) :D98-D107
[9]   Whale counting in satellite and aerial images with deep learning [J].
Guirado, Emilio ;
Tabik, Siham ;
Rivas, Marga L. ;
Alcaraz-Segura, Domingo ;
Herrera, Francisco .
SCIENTIFIC REPORTS, 2019, 9 (1)
[10]   Visualizing Intracellular Organelle and Cytoskeletal Interactions at Nanoscale Resolution on Millisecond Timescales [J].
Guo, Yuting ;
Li, Di ;
Zhang, Siwei ;
Yang, Yanrui ;
Liu, Jia-Jia ;
Wang, Xinyu ;
Liu, Chong ;
Milkie, Daniel E. ;
Moore, Regan P. ;
Tulu, U. Serdar ;
Kiehart, Daniel P. ;
Hu, Junjie ;
Lippincott-Schwartz, Jennifer ;
Betzig, Eric ;
Li, Dong .
CELL, 2018, 175 (05) :1430-+