A new reflowing strategy based on lithiophilic substrates towards smooth and stable lithium metal anodes

被引:33
作者
Song, Rensheng [1 ]
Ge, Yuqiang [2 ]
Wang, Bo [1 ]
Lv, Qiang [1 ]
Wang, Fei [1 ]
Ruan, Tingting [1 ]
Wang, Dianlong [1 ]
Dou, Shixue [3 ]
Liu, Huakun [3 ]
机构
[1] Harbin Inst Technol, Sch Chem & Chem Engn, MIIT Key Lab Crit Mat Technol New Energy Convers, Harbin 150001, Heilongjiang, Peoples R China
[2] Harbin Inst Technol, State Key Lab Adv Welding & Joining, Harbin 150001, Heilongjiang, Peoples R China
[3] Univ Wollongong, Australian Inst Innovat Mat, Inst Superconducting & Elect Mat, Wollongong, NSW 2500, Australia
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; CURRENT COLLECTOR; SCAFFOLD; ELECTROLYTE; DEPOSITION; SURFACE;
D O I
10.1039/c9ta05503g
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work, we propose a facile, efficient and novel reflowing strategy to smooth the surface and decrease the interfacial resistance of lithium metal pre-deposited on a lithiophilic substrate, leading to a stable lithium metal anode with high electrochemical performance. First, on the basis of lithiophilic modification of a Cu substrate with a Au sputtering layer, the Li metal nucleation overpotential on the substrate is decreased, thus favoring uniform Li nucleation and growth. Second, owing to morphology reshaping by the reflowing treatment, the surface of the lithium metal anode could be further smoothed, and the interfacial resistance could also be reduced due to the modified solid electrolyte interface (SEI) film after the reflowing treatment. Therefore, a novel reflowing-treated Li/Au/Cu (RF-Li/Au/Cu) anode exhibits excellent electrochemical performance. Through galvanostatic measurements, stable cycling of the symmetric cells with the RF-Li/Au/Cu electrode for more than 1600 h and nearly 900 h is achieved at 0.5 mA cm(-2) and 1 mA cm(-2) with a capacity of 1 mA h cm(-2), respectively. In addition, LiFePO4 cells with the RF-Li/Au/Cu anode show better rate performance and longer cycling life compared with those with an untreated Li/Au/Cu anode. This work provides a new concept and facile approach for developing stable Li metal anodes with high electrochemical performance.
引用
收藏
页码:18126 / 18134
页数:9
相关论文
共 49 条
[1]   Electrochemical Lithiation Cycles of Gold Anodes Observed by In Situ High-Energy X-ray Diffraction [J].
Bach, Philipp ;
Valencia-Jaime, Irais ;
Ruett, Uta ;
Gutowski, Olof ;
Romero, Aldo H. ;
Renner, Frank U. .
CHEMISTRY OF MATERIALS, 2016, 28 (09) :2941-2948
[2]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[3]   Lithiophilicity chemistry of heteroatom-doped carbon to guide uniform lithium nucleation in lithium metal anodes [J].
Chen, Xiang ;
Chen, Xiao-Ru ;
Hou, Ting-Zheng ;
Li, Bo-Quan ;
Cheng, Xin-Bing ;
Zhang, Rui ;
Zhang, Qiang .
SCIENCE ADVANCES, 2019, 5 (02)
[4]   Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review [J].
Cheng, Xin-Bing ;
Zhang, Rui ;
Zhao, Chen-Zi ;
Zhang, Qiang .
CHEMICAL REVIEWS, 2017, 117 (15) :10403-10473
[5]   A Review of Solid Electrolyte Interphases on Lithium Metal Anode [J].
Cheng, Xin-Bing ;
Zhang, Rui ;
Zhao, Chen-Zi ;
Wei, Fei ;
Zhang, Ji-Guang ;
Zhang, Qiang .
ADVANCED SCIENCE, 2016, 3 (03)
[6]   Suppressive effect of Li2CO3 on initial irreversibility at carbon anode in Li-ion batteries [J].
Choi, YK ;
Chung, KI ;
Kim, WS ;
Sung, YE ;
Park, SM .
JOURNAL OF POWER SOURCES, 2002, 104 (01) :132-139
[7]  
Conway B. E., 1980, J ELECTROCHEM SOC, V127, p507C
[8]   Dendrite-Free Lithium Deposition via Self-Healing Electrostatic Shield Mechanism [J].
Ding, Fei ;
Xu, Wu ;
Graff, Gordon L. ;
Zhang, Jian ;
Sushko, Maria L. ;
Chen, Xilin ;
Shao, Yuyan ;
Engelhard, Mark H. ;
Nie, Zimin ;
Xiao, Jie ;
Liu, Xingjiang ;
Sushko, Peter V. ;
Liu, Jun ;
Zhang, Ji-Guang .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (11) :4450-4456
[9]   The Li-Ion Rechargeable Battery: A Perspective [J].
Goodenough, John B. ;
Park, Kyu-Sung .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (04) :1167-1176
[10]   Challenges for Rechargeable Li Batteries [J].
Goodenough, John B. ;
Kim, Youngsik .
CHEMISTRY OF MATERIALS, 2010, 22 (03) :587-603