Equiangular lines in Euclidean spaces

被引:51
作者
Greaves, Gary [1 ]
Koolen, Jacobus H. [2 ]
Munemasa, Akihiro [1 ]
Szoellosi, Ferenc [1 ]
机构
[1] Tohoku Univ, Grad Sch Informat Sci, Res Ctr Pure & Appl Math, Sendai, Miyagi 9808579, Japan
[2] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Anhui, Peoples R China
关键词
Equiangular lines; Seidel matrix; Switching; Two-graph; HADAMARD-MATRICES; EULER GRAPHS; REPRESENTATIONS;
D O I
10.1016/j.jcta.2015.09.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain several new results contributing to the theory of real equiangular line systems Among other things, we present a new general lower bound on the maximum number of equiangular lines in d dimensional Euclidean space; we describe the two-graphs on 12 vertices; and we investigate Seidel matrices with exactly three distinct eigenvalues. As a result, we improve on two long-standing upper bounds regarding the maximum number of equiangular lines in dimensions d = 14 and d = 16. Additionally, we prove the nonexistence of certain regular graphs with four eigenvalues, and correct some tables from the literature. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:208 / 235
页数:28
相关论文
共 50 条
  • [31] Equiangular tight frames and fourth root seidel matrices
    Duncan, David M.
    Hoffman, Thomas R.
    Solazzo, James P.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (11) : 2816 - 2823
  • [32] Equiangular Basis Vectors: A Novel Paradigm for Classification Tasks
    Shen, Yang
    Sun, Xuhao
    Wei, Xiu-Shen
    Xu, Anqi
    Gao, Lingyan
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2025, 133 (01) : 372 - 397
  • [33] A construction of unimodular equiangular tight frames from resolvable Steiner systems
    Jasper, John
    WAVELETS AND SPARSITY XV, 2013, 8858
  • [34] Euclidean relativistic quantum mechanics
    Polyzou, W. N.
    Kopp, Philip
    PROGRESS IN PARTICLE AND NUCLEAR PHYSICS, 2012, 67 (02) : 558 - 562
  • [35] Euclidean and super Euclidean algebras and Localizations of Uq(sl(2)) and Uq(osp(1|2))
    Moylan, Patrick
    8TH INTERNATIONAL SYMPOSIUM ON QUANTUM THEORY AND SYMMETRIES (QTS8), 2014, 512
  • [36] Euclidean formulation of relativistic quantum mechanics
    Kopp, P.
    Polyzou, W. N.
    PHYSICAL REVIEW D, 2012, 85 (01):
  • [37] Combinatorial quantisation of the Euclidean torus universe
    Meusburger, C.
    Noui, K.
    NUCLEAR PHYSICS B, 2010, 841 (03) : 463 - 505
  • [38] THE ALGEBRAS OF SEMI-INVARIANTS OF EUCLIDEAN QUIVERS
    Di Trapano, Cristina
    COMMUNICATIONS IN ALGEBRA, 2011, 39 (11) : 4357 - 4373
  • [39] Semi-stable subcategories for Euclidean quivers
    Ingalls, Colin
    Paquette, Charles
    Thomas, Hugh
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2015, 110 : 805 - 840
  • [40] The Toric Geometry of Triangulated Polygons in Euclidean Space
    Howard, Benjamin
    Manon, Christopher
    Millson, John
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2011, 63 (04): : 878 - 937