Gradient flows computing the C-numerical range with applications in NMR spectroscopy

被引:22
作者
Helmke, U
Hüper, K
Moore, JB
Schulte-Herbrüggen, T
机构
[1] Univ Wurzburg, Dept Math, D-97074 Wurzburg, Germany
[2] Australian Natl Univ, Dept Syst Engn, RSISE, Canberra, ACT 0200, Australia
[3] Carlsberg Lab, Dept Chem, DK-2500 Copenhagen, Denmark
关键词
C-numerical range; optimization; gradient flows; discretization; NMR spectroscopy; nilpotent matrices;
D O I
10.1023/A:1016582714251
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper gradient flows on unitary matrices are studied that maximize the real part of the C-numerical range of an arbitrary complex nxn-matrix A. The geometry of the C-numerical range can be quite complicated and is only partially understood. A numerical discretization scheme of the gradient flow is presented that converges to the set of critical points of the cost function. Special emphasis is taken on a situation arising in NMR spectroscopy where the matrices C,A are nilpotent and the C-numerical range is a circular disk in the complex plane around the origin.
引用
收藏
页码:283 / 308
页数:26
相关论文
共 20 条
[1]  
ANDO T, 1994, LINEAR MULTILINEAR A, V37, P1
[2]  
[Anonymous], P S PURE MATH AMS
[3]  
BEBIANO N, 1988, LINEAR MULTILINEAR A, V23, P145
[4]  
Brockett R, 2000, SPRINGER INT SER ENG, V518, P75
[5]  
Brockett R. W., 1988, Proceedings of the 27th IEEE Conference on Decision and Control (IEEE Cat. No.88CH2531-2), P799, DOI 10.1109/CDC.1988.194420
[6]   DYNAMIC-SYSTEMS THAT SORT LISTS, DIAGONALIZE MATRICES, AND SOLVE LINEAR-PROGRAMMING PROBLEMS [J].
BROCKETT, RW .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1991, 146 :79-91
[7]  
Cheung W.-S., 1996, LINEAR MULTILINEAR A, V41, P245, DOI DOI 10.1080/03081089608818479
[8]   ON THE C-NUMERICAL RANGE OF A MATRIX [J].
DAZORD, J .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1994, 212 :21-29
[9]   Unitary control in quantum ensembles:: Maximizing signal intensity in coherent spectroscopy [J].
Glaser, SJ ;
Schulte-Herbrüggen, T ;
Sieveking, M ;
Schedletzky, O ;
Nielsen, NC ;
Sorensen, OW ;
Griesinger, C .
SCIENCE, 1998, 280 (5362) :421-424
[10]   ELEMENTARY INCLUSION RELATIONS FOR GENERALIZED NUMERICAL RANGES [J].
GOLDBERG, M ;
STRAUS, EG .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1977, 18 (01) :1-24