Dependence of eigenvalues on the problem

被引:43
作者
Kong, Q
Wu, H
Zettl, A
机构
[1] Department of Mathematics, Northern Illinois University, DeKalb
关键词
eigenvalues; linear boundary value problems; continuous dependence on parameters;
D O I
10.1002/mana.19971880111
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The eigenvalues of linear, regular, two point boundary value problems depend continuously on the problem. In the important self-adjoint case studied by NAIMARK and WEIDMANN this dependence is differentiable and the derivatives of the eigenvalues with respect to a given parameter: an endpoint, a boundary condition, a coefficient, or the weight function, are found. Monotone properties of the eigenvalues with respect to the coefficients and the weight function are established without using the variational (min-max) characterization.
引用
收藏
页码:173 / 201
页数:29
相关论文
共 19 条
[11]   Eigenvalues of regular Sturm-Liouville problems [J].
Kong, Q ;
Zettl, A .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1996, 131 (01) :1-19
[12]   Dependence of eigenvalues of Sturm-Liouville problems on the boundary [J].
Kong, Q ;
Zettl, A .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1996, 126 (02) :389-407
[13]  
Kong Q.K., 1994, Inequalities and Applications, V3, P381
[14]  
MOELLER M, 1995, J DIFFERNTIAL EQUATI, V115, P24
[15]  
MOELLER M, 1993, RESULTS MATH, V24, P153
[16]  
Royden H., 1988, MATH STAT
[17]  
Weidmann J., 1987, LECT NOTES MATH, V1258
[19]  
Zettl A., 1975, ROCKY MT J MATH, V5, P453