Dependence of eigenvalues on the problem

被引:43
作者
Kong, Q
Wu, H
Zettl, A
机构
[1] Department of Mathematics, Northern Illinois University, DeKalb
关键词
eigenvalues; linear boundary value problems; continuous dependence on parameters;
D O I
10.1002/mana.19971880111
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The eigenvalues of linear, regular, two point boundary value problems depend continuously on the problem. In the important self-adjoint case studied by NAIMARK and WEIDMANN this dependence is differentiable and the derivatives of the eigenvalues with respect to a given parameter: an endpoint, a boundary condition, a coefficient, or the weight function, are found. Monotone properties of the eigenvalues with respect to the coefficients and the weight function are established without using the variational (min-max) characterization.
引用
收藏
页码:173 / 201
页数:29
相关论文
共 19 条
[1]  
[Anonymous], 1968, LINEAR DIFFERENTIAL
[2]  
Bailey P. B., 1978, ACM Transactions on Mathematical Software, V4, P193, DOI 10.1145/355791.355792
[3]  
BAILEY PB, EIGENFUNCTION EIGENV
[4]  
DIEUDONNE J, 1969, F MODERN ANAL
[5]  
DUNFORD N., 1963, Linear Operators, V2
[6]  
Everitt W., 1979, New Arch Math, V27, P363
[7]  
EVERITT WN, 1987, P LOND MATH SOC, V3, P300
[9]  
FULTON CT, 1993, ACM T MATH SOFTWARE, V19, P360
[10]  
GREENBERG L, CODE SLEUTH SOLVING