Existence of nontrivial solutions of linear functional equations

被引:9
作者
Kiss, Gergely [1 ]
Varga, Adrienn [2 ]
机构
[1] Eotvos Lorand Univ, Dept Anal, H-1117 Budapest, Hungary
[2] Univ Debrecen, Fac Engn, H-4010 Debrecen, Hungary
关键词
Functional equations; field isomorphisms; variety;
D O I
10.1007/s00010-013-0212-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the functional equation (n)Sigma(i=1) a(i)f(b(i)x + c(i)h) = 0 (x, h is an element of C), where a (i) , b (i) , c (i) are fixed complex numbers and is the unknown function. We show, that if there is i such that holds for any , the functional equation has a nonconstant solution if and only if there are field automorphisms of such that is a solution of the equation.
引用
收藏
页码:151 / 162
页数:12
相关论文
共 11 条
[1]   A general functional equation and its stability [J].
Baker, JA .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (06) :1657-1664
[2]  
Baron K., 2001, AEQUATIONES MATH, V61, P1, DOI DOI 10.1007/S000100050159
[3]  
Kuczma M., 1985, An Introduction to the Theory of Functional Equations and Inequalities
[4]  
Cauchy's Equation and Jensen's Inequality
[5]   Harmonic analysis on discrete Abelian groups [J].
Laczkovich, M ;
Székelyhidi, G .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (06) :1581-1586
[6]  
Laczkovich M., 2004, AEQUATIONES MATH, V68, P177, DOI DOI 10.1007/S00010-004-2727-9
[7]  
Mazur S., 1934, 1 MITTEILUNG STUDIA, V5, P50, DOI DOI 10.4064/SM-5-1-50-68
[8]  
Mazur S., 1934, STUD MATH, V5, P179, DOI [10.4064/sm-5-1-179-189, DOI 10.4064/SM-5-1-179-189]
[9]   Behaviour of solutions of some linear functional equations at infinity [J].
Stevic, Stevo .
APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (11) :6134-6141
[10]  
SZEKELYHIDI L, 1982, PUBL MATH-DEBRECEN, V29, P19