Synchronization of hyperchaotic Lorenz system based on passive control

被引:1
作者
Wang Fa-Qiang [1 ]
Liu Chong-Xin [1 ]
机构
[1] Xi An Jiao Tong Univ, Inst Elect Engn, Xian 710049, Peoples R China
来源
CHINESE PHYSICS | 2006年 / 15卷 / 09期
关键词
hyperchaotic Lorenz system; passive control; asymptotically stabilized;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Synchronization of a hyperchaotic Lorenz system is discussed using passive control. Based on the properties of a passive system, a passive controller is designed and the synchronization between two hyperchaotic Lorenz systems under different initial conditions is realized. Simulation results show the proposed synchronization method to be effective.
引用
收藏
页码:1971 / 1975
页数:5
相关论文
共 18 条
[1]   Generating hyperchaotic Lu attractor via state feedback control [J].
Chen, AM ;
Lu, JN ;
Lü, JH ;
Yu, SM .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 364 :103-110
[2]   Adaptive synchronization of uncertain hyperchaotic systems based on parameter identification [J].
Feng, JW ;
Chen, SH ;
Wang, C .
CHAOS SOLITONS & FRACTALS, 2005, 26 (04) :1163-1169
[3]   A systematic procedure for synchronizing hyperchaos via observer design [J].
Grassi, G ;
Mascolo, S .
JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2002, 11 (01) :1-16
[4]   Controlling hyperchaos of the Rossler system [J].
Hsieh, JY ;
Hwang, CC ;
Wang, AP ;
Li, WJ .
INTERNATIONAL JOURNAL OF CONTROL, 1999, 72 (10) :882-886
[5]   Synchronization of chaotic systems via nonlinear control [J].
Huang, LL ;
Feng, RP ;
Wang, M .
PHYSICS LETTERS A, 2004, 320 (04) :271-275
[6]   Impulsive synchronization of chaotic systems [J].
Li, CD ;
Liao, XF ;
Zhang, XY .
CHAOS, 2005, 15 (02)
[7]   An active control synchronization for two modified Chua circuits [J].
Li, GH .
CHINESE PHYSICS, 2005, 14 (03) :472-475
[8]   Hyperchaos evolved from the generalized Lorenz equation [J].
Li, YX ;
Tang, WKS ;
Chen, GR .
INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, 2005, 33 (04) :235-251
[9]   A linear feedback synchronization theorem for a class of chaotic systems [J].
Liu, F ;
Ren, Y ;
Shan, XM ;
Qiu, ZL .
CHAOS SOLITONS & FRACTALS, 2002, 13 (04) :723-730
[10]   A new chaotic attractor coined [J].
Lü, JH ;
Chen, GR .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (03) :659-661