A computational procedure and analysis for multi-term time-fractional Burgers-type equation

被引:1
作者
Kanth, Ravi A. S., V [1 ]
Garg, Neetu [1 ]
机构
[1] Natl Inst Technol Kurukshetra, Dept Math, Kurukshetra 136119, Haryana, India
关键词
convergence; exponential B-spline; L2; discretization; multi-term time-fractional Burgers-type equation; stability; DIFFERENCE SCHEME;
D O I
10.1002/mma.8299
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents a new numerical algorithm dealing with multi-term time-fractional Burgers-type equation involving the Caputo derivative. The proposed method consists of temporal discretization of L2$$ L2 $$ formula and spatial discretization using the exponential B-splines. The semi implicit approach is applied to discretize the nonlinear term u partial differential xu$$ u{\partial}_{\mathtt{x}}u $$. We adopt the Von-Neumann method to study stability. We also establish the convergence analysis. The proposed method is employed to solve a few numerical examples in order to test its efficiency and accuracy. Comparisons with the recent works confirm the efficiency and robustness of the proposed method.
引用
收藏
页码:9218 / 9232
页数:15
相关论文
共 32 条
[1]  
Burgers J.M., 1948, Adv. Appl. Mech, V1, P171, DOI [DOI 10.1016/S0065-2156(08)70100-5, 10.1016/S0065-2156(08)70100-5]
[2]   Similarity solutions to nonlinear heat conduction and Burgers/Korteweg-deVries fractional equations [J].
Djordjevic, Vladan D. ;
Atanackovic, Teodor M. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 222 (02) :701-714
[3]   Parametric spline functions for the solution of the one time fractional Burgers' equation [J].
El-Danaf, Talaat S. ;
Hadhoud, Adel R. .
APPLIED MATHEMATICAL MODELLING, 2012, 36 (10) :4557-4564
[4]   Numerical Solution of Time Fractional Burgers Equation by Cubic B-spline Finite Elements [J].
Esen, Alaattin ;
Tasbozan, Orkun .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (03) :1325-1337
[5]   Fractional-calculus model for temperature and pressure waves in fluid-saturated porous rocks [J].
Garra, Roberto .
PHYSICAL REVIEW E, 2011, 84 (03)
[6]   Stochastic generalized Burgers equations driven by fractional noises [J].
Jiang, Yiming ;
Wei, Tingting ;
Zhou, Xiaowen .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (02) :1934-1961
[7]   An implicit numerical scheme for a class of multi-term time-fractional diffusion equation [J].
Kanth, A. S. V. Ravi ;
Garg, Neetu .
EUROPEAN PHYSICAL JOURNAL PLUS, 2019, 134 (06)
[8]  
Kilbas A.A., 2006, THEORY APPL FRACTION, DOI DOI 10.1016/S0304-0208(06)80001-0
[9]   A linear finite difference scheme for generalized time fractional Burgers equation [J].
Li, Dongfang ;
Zhang, Chengjian ;
Ran, Maohua .
APPLIED MATHEMATICAL MODELLING, 2016, 40 (11-12) :6069-6081
[10]   Exact solutions and numerical study of time fractional Burgers' equations [J].
Li, Lili ;
Li, Dongfang .
APPLIED MATHEMATICS LETTERS, 2020, 100