Gene expression atlas for the food security crop cassava

被引:98
作者
Wilson, Mark C. [1 ]
Mutka, Andrew M. [1 ]
Hummel, Aaron W. [2 ,3 ]
Berry, Jeffrey [1 ]
Chauhan, Raj Deepika [1 ]
Vijayaraghavan, Anupama [1 ]
Taylor, Nigel J. [1 ]
Voytas, Daniel F. [2 ,3 ]
Chitwood, Daniel H. [1 ]
Bart, Rebecca S. [1 ]
机构
[1] Donald Danforth Plant Sci Ctr, 975 North Warson Rd, St Louis, MO 63132 USA
[2] Univ Minnesota, Dept Genet Cell Biol & Dev, Minneapolis, MN 55455 USA
[3] Univ Minnesota, Ctr Genome Engn, Minneapolis, MN 55455 USA
基金
美国国家卫生研究院;
关键词
biotechnology; cassava (Manihot esculenta); food security; friable embryogenic callus; gene expression; organized embryogenic structures; RNA sequencing; MANIHOT-ESCULENTA CRANTZ; AGROBACTERIUM-MEDIATED TRANSFORMATION; ACID-RICH PROTEIN; SEQUENCE; GENOME; ROOTS; OVEREXPRESSION; ACCUMULATION; REGENERATION; REVEALS;
D O I
10.1111/nph.14443
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Cassava (Manihot esculenta) feeds c. 800 million people world-wide. Although this crop displays high productivity under drought and poor soil conditions, it is susceptible to disease, postharvest deterioration and the roots contain low nutritional content. Here, we provide molecular identities for 11 cassava tissue/organ types through RNA-sequencing and develop an open access, web-based interface for further interrogation of the data. Through this dataset, we consider the physiology of cassava. Specifically, we focus on identification of the transcriptional signatures that define the massive, underground storage roots used as a food source and the favored target tissue for transgene integration and genome editing, friable embryogenic callus (FEC). Further, we identify promoters able to drive strong expression in multiple tissue/organs. The information gained from this study is of value for both conventional and biotechnological improvement programs.
引用
收藏
页码:1632 / 1641
页数:10
相关论文
共 35 条
[1]  
de Souza CRB, 2006, PROTEIN PEPTIDE LETT, V13, P653
[2]   Trimmomatic: a flexible trimmer for Illumina sequence data [J].
Bolger, Anthony M. ;
Lohse, Marc ;
Usadel, Bjoern .
BIOINFORMATICS, 2014, 30 (15) :2114-2120
[3]   Agrobacterium-mediated transformation of friable embryogenic calli and regeneration of transgenic cassava [J].
Bull, S. E. ;
Owiti, J. A. ;
Niklaus, M. ;
Beeching, J. R. ;
Gruissem, W. ;
Vanderschuren, H. .
NATURE PROTOCOLS, 2009, 4 (12) :1845-1854
[4]   Cassava breeding:: opportunities and challenges [J].
Ceballos, H ;
Iglesias, CA ;
Pérez, JC ;
Dixon, AGO .
PLANT MOLECULAR BIOLOGY, 2004, 56 (04) :503-516
[5]   Improvements in Agrobacterium-mediated transformation of cassava (Manihot esculenta Crantz) for large-scale production of transgenic plants [J].
Chauhan, Raj Deepika ;
Beyene, Getu ;
Kalyaeva, Marina ;
Fauquet, Claude M. ;
Taylor, Nigel .
PLANT CELL TISSUE AND ORGAN CULTURE, 2015, 121 (03) :591-603
[6]   Anatomical Assessment of Root Formation and Tuberization in Cassava (Manihot esculenta Crantz) [J].
Chaweewan, Yeetoh ;
Taylor, Nigel .
TROPICAL PLANT BIOLOGY, 2015, 8 (1-2) :1-8
[7]   Isolation and characterization of the promoter sequence of a cassava gene coding for Pt2L4, a glutamic acid-rich protein differentially expressed in storage roots [J].
de Souza, C. R. ;
Aragao, F. J. ;
Moreira, E. C. O. ;
Costa, C. N. M. ;
Nascimento, S. B. ;
Carvalho, L. J. .
GENETICS AND MOLECULAR RESEARCH, 2009, 8 (01) :334-344
[8]   Overexpression of the transporters AtZIP1 and AtMTP1 in cassava changes zinc accumulation and partitioning [J].
Gaitan-Solis, Eliana ;
Taylor, Nigel J. ;
Siritunga, Dimuth ;
Stevens, William ;
Schachtman, Daniel P. .
FRONTIERS IN PLANT SCIENCE, 2015, 6
[9]   Children Consuming Cassava as a Staple Food are at Risk for Inadequate Zinc, Iron, and Vitamin A Intake [J].
Gegios, Alison ;
Amthor, Rachel ;
Maziya-Dixon, Busie ;
Egesi, Chedozie ;
Mallowa, Sally ;
Nungo, Rhoda ;
Gichuki, Simon ;
Mbanaso, Ada ;
Manary, Mark J. .
PLANT FOODS FOR HUMAN NUTRITION, 2010, 65 (01) :64-70
[10]  
GRESSHOFF PM, 1974, Z PFLANZENPHYSIOL, V73, P132, DOI 10.1016/S0044-328X(74)80084-X