Multi-Scale Deep Neural Network (MscaleDNN) for Solving Poisson-Boltzmann Equation in Complex Domains

被引:99
作者
Liu, Ziqi [1 ]
Cai, Wei [2 ]
Xu, Zhi-Qin John [3 ,4 ]
机构
[1] Beijing Computat Sci Res Ctr, Beijing 100193, Peoples R China
[2] Southern Methodist Univ, Dept Math, Dallas, TX 75275 USA
[3] Shanghai Jiao Tong Univ, Inst Nat Sci, MOE LSC, Sch Math Sci, Shanghai 200240, Peoples R China
[4] Shanghai Jiao Tong Univ, Qing Yuan Res Inst, Shanghai 200240, Peoples R China
基金
国家重点研发计划; 上海市自然科学基金; 美国国家科学基金会;
关键词
Deep neural network; Poisson-Boltzmann equation; multi-scale; frequency principle;
D O I
10.4208/cicp.OA-2020-0179
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we propose multi-scale deep neural networks (MscaleDNNs) using the idea of radial scaling in frequency domain and activation functions with compact support. The radial scaling converts the problem of approximation of high frequency contents of PDEs' solutions to a problem of learning about lower frequency functions, and the compact support activation functions facilitate the separation of frequency contents of the target function to be approximated by corresponding DNNs. As a result, the MscaleDNNs achieve fast uniform convergence over multiple scales. The proposed MscaleDNNs are shown to be superior to traditional fully connected DNNs and be an effective mesh-less numerical method for Poisson-Boltzmann equations with ample frequency contents over complex and singular domains.
引用
收藏
页码:1970 / 2001
页数:32
相关论文
共 30 条
[1]  
[Anonymous], 2013, Computational Methods for Electromagnetic Phenomena: electrostatics in solvation, scattering, and electron transport
[2]  
[Anonymous], 1992, 10 LECT WAVELETS
[3]   Electrostatics of nanosystems: Application to microtubules and the ribosome [J].
Baker, NA ;
Sept, D ;
Joseph, S ;
Holst, MJ ;
McCammon, JA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (18) :10037-10041
[4]  
Cai W., 2019, ABS191011710 ARXIV
[5]  
Cai W., 2019, SIAM J SCI COMPUTING
[6]  
Cao Y., 2020, ARXIV191201198
[7]  
Chern I., 2003, Methods Appl. Anal., V10, P309, DOI DOI 10.4310/MAA.2003.V10.N2.A9
[8]  
Deng Mo, 2018, ARXIV181107945 ARXIV181107945
[9]   Deep Learning-Based Numerical Methods for High-Dimensional Parabolic Partial Differential Equations and Backward Stochastic Differential Equations [J].
E, Weinan ;
Han, Jiequn ;
Jentzen, Arnulf .
COMMUNICATIONS IN MATHEMATICS AND STATISTICS, 2017, 5 (04) :349-380
[10]  
Hamilton A., 2019, TECHNICAL REPORT