Lipidomics and Biomarker Discovery in Kidney Disease

被引:48
作者
Afshinnia, Farsad [1 ]
Rajendiran, Thekkelnaycke M. [2 ,3 ]
Wernisch, Stefanie [1 ]
Soni, Tanu [2 ]
Jadoon, Adil [1 ]
Karnovsky, Alla [4 ]
Michailidis, George [2 ,5 ]
Pennathur, Subramaniam [1 ,2 ,6 ]
机构
[1] Univ Michigan, Dept Internal Med Nephrol, Ann Arbor, MI 48105 USA
[2] Univ Michigan, Michigan Reg Comprehens Metabol Resource Core, Ann Arbor, MI 48105 USA
[3] Univ Michigan, Dept Pathol, Ann Arbor, MI 48105 USA
[4] Univ Michigan, Dept Computat Med & Bioinformat, Ann Arbor, MI 48105 USA
[5] Univ Florida, Dept Stat, Gainesville, FL 32611 USA
[6] Univ Michigan, Dept Mol & Integrat Physiol, Ann Arbor, MI 48105 USA
基金
美国国家卫生研究院;
关键词
Lipidomics; biomarkers; mass spectrometry; metabolomics; TANDEM MASS-SPECTROMETRY; DOUBLE-BOND POSITION; TERT-BUTYL ETHER; SHOTGUN LIPIDOMICS; FATTY-ACIDS; CHROMATOGRAPHY; METABOLOMICS; EXTRACTION; IDENTIFICATION; SELECTION;
D O I
10.1016/j.semnephrol.2018.01.004
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
Technological advances in mass spectrometrybased lipidomic platforms have provided the opportunity for comprehensive profiling of lipids in biological samples and shown alterations in the lipidome that occur in metabolic disorders. A lipidomic approach serves as a powerful tool for biomarker discovery and gaining insight to molecular mechanisms of disease, especially when integrated with other -omics platforms (ie, transcriptomics, proteomics, and metabolomics) in the context of systems biology. In this review, we describe the workflow commonly applied to the conduct of lipidomic studies including important aspects of study design, sample preparation, biomarker identification and quantification, and data processing and analysis, as well as crucial considerations in clinical applications. We also review some recent studies of the application of lipidomic platforms that highlight the potential of lipid biomarkers and add to our understanding of the molecular basis of kidney disease. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:127 / 141
页数:15
相关论文
共 74 条
[1]   Impaired β-Oxidation and Altered Complex Lipid Fatty Acid Partitioning with Advancing CKD [J].
Afshinnia, Farsad ;
Rajendiran, Thekkelnaycke M. ;
Soni, Tanu ;
Byun, Jaeman ;
Wernisch, Stefanie ;
Sas, Kelli M. ;
Hawkins, Jennifer ;
Bellovich, Keith ;
Gipson, Debbie ;
Michailidis, George ;
Pennathur, Subramaniam .
JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2018, 29 (01) :295-306
[2]   Lipidomic Signature of Progression of Chronic Kidney Disease in the Chronic Renal Insufficiency Cohort [J].
Afshinnia, Farsad ;
Rajendiran, Thekkelnaycke M. ;
Karnovsky, Alla ;
Soni, Tanu ;
Wang, Xue ;
Xie, Dawei ;
Yang, Wei ;
Shafi, Tariq ;
Weir, Matthew R. ;
He, Jiang ;
Brecklin, Carolyn S. ;
Rhee, Eugene P. ;
Schelling, Jeffrey R. ;
Ojo, Akinlolu ;
Feldman, Harold ;
Michailidis, George ;
Pennathur, Subramaniam .
KIDNEY INTERNATIONAL REPORTS, 2016, 1 (04) :256-268
[3]  
[Anonymous], 2006, Journal of the Royal Statistical Society, Series B
[4]   MetaMapp: mapping and visualizing metabolomic data by integrating information from biochemical pathways and chemical and mass spectral similarity [J].
Barupal, Dinesh K. ;
Haldiya, Pradeep K. ;
Wohlgemuth, Gert ;
Kind, Tobias ;
Kothari, Shanker L. ;
Pinkerton, Kent E. ;
Fiehn, Oliver .
BMC BIOINFORMATICS, 2012, 13
[5]   Sparse network modeling and metscape-based visualization methods for the analysis of large-scale metabolomics data [J].
Basu, Sumanta ;
Duren, William ;
Evans, Charles R. ;
Burant, Charles F. ;
Michailidis, George ;
Karnovsky, Alla .
BIOINFORMATICS, 2017, 33 (10) :1545-1553
[6]  
Benjamini Y, 2001, ANN STAT, V29, P1165
[7]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[8]   Autonomous Metabolomics for Rapid Metabolite Identification in Global Profiling [J].
Benton, H. Paul ;
Ivanisevic, Julijana ;
Mahieu, Nathaniel G. ;
Kurczy, Michael E. ;
Johnson, Caroline H. ;
Franco, Lauren ;
Rinehart, Duane ;
Valentine, Elizabeth ;
Gowda, Harsha ;
Ubhi, Baljit K. ;
Tautenhahn, Ralf ;
Gieschen, Andrew ;
Fields, Matthew W. ;
Patti, Gary J. ;
Siuzdak, Gary .
ANALYTICAL CHEMISTRY, 2015, 87 (02) :884-891
[9]   MS metabolomics from study design to data-analysis - using a versatile pathogen as a test case [J].
Berg, Maya ;
Vanaerschot, Manu ;
Jankevics, Andris ;
Cuypers, Bart ;
Breitling, Rainer ;
Dujardin, Jean-Claude .
COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2013, 4 (05)
[10]   Lipidomics Profiling by High-Resolution LC-MS and High-Energy Collisional Dissociation Fragmentation: Focus on Characterization of Mitochondrial Cardiolipins and Monolysocardiolipins [J].
Bird, Susan S. ;
Marur, Vasant R. ;
Sniatynski, Matthew J. ;
Greenberg, Heather K. ;
Kristal, Bruce S. .
ANALYTICAL CHEMISTRY, 2011, 83 (03) :940-949