Finite-size effects and analytical modeling of electrostatic force microscopy applied to dielectric films

被引:47
作者
Gomila, G. [1 ,2 ]
Gramse, G. [1 ,2 ]
Fumagalli, L. [1 ,2 ]
机构
[1] Inst Bioengn Catalunya IBEC, Barcelona 08028, Spain
[2] Univ Barcelona, Dept Elect, E-08028 Barcelona, Spain
关键词
electrostatic force microscopy; dielectric films; dielectric constant; quantification; POLARIZATION;
D O I
10.1088/0957-4484/25/25/255702
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A numerical analysis of the polarization force between a sharp conducting probe and a dielectric film of finite lateral dimensions on a metallic substrate is presented with the double objective of (i) determining the conditions under which the film can be approximated by a laterally infinite film and (ii) proposing an analytical model valid in this limit. We show that, for a given dielectric film, the critical diameter above which the film can be modeled as laterally infinite depends not only on the probe geometry, as expected, but mainly on the film thickness. In particular, for films with intermediate to large thicknesses (>100 nm), the critical diameter is nearly independent from the probe geometry and essentially depends on the film thickness and dielectric constant following a relatively simple phenomenological expression. For films that can be considered as laterally infinite, we propose a generalized analytical model valid in the thin-ultrathin limit (<20-50 nm) that reproduces the numerical calculations and the experimental data. Present results provide a general framework under which accurate quantification of electrostatic force microscopy measurements on dielectric films on metallic substrates can be achieved.
引用
收藏
页数:11
相关论文
共 29 条
  • [1] Local dielectric spectroscopy of polymer films
    Crider, P. S.
    Majewski, M. R.
    Zhang, Jingyun
    Oukris, H.
    Israeloff, N. E.
    [J]. APPLIED PHYSICS LETTERS, 2007, 91 (01)
  • [2] Kelvin probe force microscopy and electrostatic force microscopy responses to the polarization in a ferroelectric thin film: Theoretical and experimental investigations
    Cuniot-Ponsard, M.
    [J]. JOURNAL OF APPLIED PHYSICS, 2013, 114 (01)
  • [3] Nanoscale capacitance imaging with attofarad resolution using ac current sensing atomic force microscopy
    Fumagalli, L.
    Ferrari, G.
    Sampietro, M.
    Casuso, I.
    Martinez, E.
    Samitier, J.
    Gomila, G.
    [J]. NANOTECHNOLOGY, 2006, 17 (18) : 4581 - 4587
  • [4] Quantifying the dielectric constant of thick insulators using electrostatic force microscopy
    Fumagalli, L.
    Gramse, G.
    Esteban-Ferrer, D.
    Edwards, M. A.
    Gomila, G.
    [J]. APPLIED PHYSICS LETTERS, 2010, 96 (18)
  • [5] Fumagalli L, 2012, NAT MATER, V11, P808, DOI [10.1038/NMAT3369, 10.1038/nmat3369]
  • [6] Quantitative Nanoscale Dielectric Microscopy of Single-Layer Supported Biomembranes
    Fumagalli, Laura
    Ferrari, Giorgio
    Sampietro, Marco
    Gomila, Gabriel
    [J]. NANO LETTERS, 2009, 9 (04) : 1604 - 1608
  • [7] Dielectric-constant measurement of thin insulating films at low frequency by nanoscale capacitance microscopy
    Fumagalli, Laura
    Ferrari, Giorgio
    Sampietro, Marco
    Gomila, Gabriel
    [J]. APPLIED PHYSICS LETTERS, 2007, 91 (24)
  • [8] Electrostatic forces between sharp tips and metallic and dielectric samples
    Gómez-Moñivas, S
    Froufe-Pérez, LS
    Caamaño, AJ
    Sáenz, JJ
    [J]. APPLIED PHYSICS LETTERS, 2001, 79 (24) : 4048 - 4050
  • [9] Quantification of the dielectric constant of single non-spherical nanoparticles from polarization forces: eccentricity effects
    Gomila, G.
    Esteban-Ferrer, D.
    Fumagalli, L.
    [J]. NANOTECHNOLOGY, 2013, 24 (50)
  • [10] Nanoscale capacitance microscopy of thin dielectric films
    Gomila, G.
    Toset, J.
    Fumagalli, L.
    [J]. JOURNAL OF APPLIED PHYSICS, 2008, 104 (02)