Duality and hidden equilibrium in transport models

被引:18
作者
Frassek, Rouven [1 ]
Giardina, Cristian [2 ]
Kurchan, Jorge [1 ]
机构
[1] Univ Paris, ENS, Univ PSL, Lab Phys,Ecole Normale Super,CNRS,Sorbonne Univ, F-75005 Paris, France
[2] Univ Modena & Reggio Emilia, FIM, Via G Campi 213-B, I-41125 Modena, Italy
关键词
BETHE-ANSATZ; INTEGRABILITY; SYMMETRIES; EQUATIONS; SYSTEMS; MATRIX; QCD;
D O I
10.21468/SciPostPhys.9.4.054
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A large family of diffusive models of transport that have been considered in the past years admit a transformation into the same model in contact with an equilibrium bath. This mapping holds at the full dynamical level, and is independent of dimension or topology. It provides a good opportunity to discuss questions of time reversal in out of equilibrium contexts. In particular, thanks to the mapping one may define the free energy in the non-equilibrium states very naturally as the (usual) free energy of the mapped system.
引用
收藏
页数:18
相关论文
共 49 条
[1]   SURFACE EXPONENTS OF THE QUANTUM XXZ, ASHKIN-TELLER AND POTTS MODELS [J].
ALCARAZ, FC ;
BARBER, MN ;
BATCHELOR, MT ;
BAXTER, RJ ;
QUISPEL, GRW .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (18) :6397-6409
[2]   REACTION-DIFFUSION PROCESSES, CRITICAL-DYNAMICS, AND QUANTUM CHAINS [J].
ALCARAZ, FC ;
DROZ, M ;
HENKEL, M ;
RITTENBERG, V .
ANNALS OF PHYSICS, 1994, 230 (02) :250-302
[3]   THE q-HAHN ASYMMETRIC EXCLUSION PROCESS [J].
Barraquand, Guillaume ;
Corwin, Ivan .
ANNALS OF APPLIED PROBABILITY, 2016, 26 (04) :2304-2356
[4]   Review of AdS/CFT Integrability: An Overview [J].
Beisert, Niklas ;
Ahn, Changrim ;
Alday, Luis F. ;
Bajnok, Zoltan ;
Drummond, James M. ;
Freyhult, Lisa ;
Gromov, Nikolay ;
Janik, Romuald A. ;
Kazakov, Vladimir ;
Klose, Thomas ;
Korchemsky, Gregory P. ;
Kristjansen, Charlotte ;
Magro, Marc ;
Mcloughlin, Tristan ;
Minahan, Joseph A. ;
Nepomechie, Rafael I. ;
Rej, Adam ;
Roiban, Radu ;
Schaefer-Nameki, Sakura ;
Sieg, Christoph ;
Staudacher, Matthias ;
Torrielli, Alessandro ;
Tseytlin, Arkady A. ;
Vieira, Pedro ;
Volin, Dmytro ;
Zoubos, Konstantinos .
LETTERS IN MATHEMATICAL PHYSICS, 2012, 99 (1-3) :3-32
[5]   Open Quantum Symmetric Simple Exclusion Process [J].
Bernard, Denis ;
Jin, Tony .
PHYSICAL REVIEW LETTERS, 2019, 123 (08)
[6]   Fourier's law for a microscopic model of heat conduction [J].
Bernardin, C ;
Olla, S .
JOURNAL OF STATISTICAL PHYSICS, 2005, 121 (3-4) :271-289
[7]   Macroscopic fluctuation theory [J].
Bertini, Lorenzo ;
De Sole, Alberto ;
Gabrielli, Davide ;
Jona-Lasinio, Giovanni ;
Landim, Claudio .
REVIEWS OF MODERN PHYSICS, 2015, 87 (02) :593-636
[8]   Integrability of three-particle evolution equations in QCD [J].
Braun, VM ;
Derkachov, SE ;
Manashov, AN .
PHYSICAL REVIEW LETTERS, 1998, 81 (10) :2020-2023
[9]  
Carinci G., 2020, MONOGRAPH UNPUB
[10]  
Carinci G, 2016, PROBAB THEORY REL, V166, P887, DOI 10.1007/s00440-015-0674-0