Orientations and detachments of graphs with prescribed degrees and connectivity

被引:0
作者
Iwata, Satoru [1 ]
Jordan, Tibor [2 ,3 ]
机构
[1] Univ Tokyo, Dept Math Informat, Tokyo 1138656, Japan
[2] Eotvos Lorand Univ, Dept Operat Res, H-1117 Budapest, Hungary
[3] MTA ELTE Egervary Res Grp Combinatorial Optimizat, Budapest, Hungary
基金
匈牙利科学研究基金会;
关键词
Detachment; Graph; Orientation; Arborescence; Spanning tree;
D O I
10.1016/j.disopt.2014.02.003
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We give a necessary and sufficient condition for a graph to have an orientation that has k edge-disjoint arborescences rooted at a designated vertex s subject to lower and upper bounds on the in-degree at each vertex. The result is used to derive a characterization of graphs having a detachment that contains k edge-disjoint spanning trees. Efficient algorithms for finding those orientations and detachments are also described. In particular, the paper provides an algorithm for finding a connected (loopless) detachment in O(nm) time, improving on the previous best running time bound, where n and m denote the numbers of vertices and edges, respectively. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:121 / 128
页数:8
相关论文
共 15 条
  • [11] Nagamochi H, 2006, LECT NOTES COMPUT SC, V4112, P274
  • [12] Nash-Williams J. A., 1961, J LOND MATH SOC, V36, P445, DOI DOI 10.1112/JLMS/S1-36.1.445
  • [13] NASHWILLIAMS CSA, 1985, J LOND MATH SOC, V31, P17
  • [14] NASHWILLIAMS CSJ, 1995, J COMBIN MATH COMBIN, V19, P33
  • [15] Tutte William T., 1961, J. London Math. Soc., V1, P221, DOI DOI 10.1112/JLMS/S1-36.1.221