An analysis of COVID-19 spread based on fractal interpolation and fractal dimension

被引:41
作者
Pacurar, Cristina-Maria [1 ]
Necula, Bogdan-Radu [2 ]
机构
[1] Transilvania Univ Brasov, Fac Math & Informat, Blvd Eroilor 29, Brasov 500036, Romania
[2] Transilvania Univ Brasov, Fac Med, Blvd Eroilor 29, Brasov 500036, Romania
关键词
Covid-19; Epidemic curve; Epidemic spreading; Fractal interpolation; Box-dimension;
D O I
10.1016/j.chaos.2020.110073
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The present paper proposes a reconstruction of the epidemic curves from the fractal interpolation point of view. Looking at the epidemic curves as fractal structures might be an efficient way to retrieve missing pieces of information due to insufficient testing and predict the evolution of the disease. A fractal approach of the epidemic curve can contribute to the assessment and modeling of other epidemics. On the other hand, we have considered the spread of the epidemic in countries like Romania, Italy, Spain, and Germany and analyzed the spread of the disease in those countries based on their fractal dimension. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:8
相关论文
共 29 条
[1]   Data-based analysis, modelling and forecasting of the COVID-19 outbreak [J].
Anastassopoulou, Cleo ;
Russo, Lucia ;
Tsakris, Athanasios ;
Siettos, Constantinos .
PLOS ONE, 2020, 15 (03)
[2]   The proximal origin of SARS-CoV-2 [J].
Andersen, Kristian G. ;
Rambaut, Andrew ;
Lipkin, W. Ian ;
Holmes, Edward C. ;
Garry, Robert F. .
NATURE MEDICINE, 2020, 26 (04) :450-452
[3]   Estimating the infection horizon of COVID-19 in eight countries with a data-driven approach [J].
Barmparis, G. D. ;
Tsironis, G. P. .
CHAOS SOLITONS & FRACTALS, 2020, 135
[4]   HIDDEN VARIABLE FRACTAL INTERPOLATION FUNCTIONS [J].
BARNSLEY, MF ;
ELTON, J ;
HARDIN, D ;
MASSOPUST, P .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1989, 20 (05) :1218-1242
[5]   FRACTAL FUNCTIONS AND INTERPOLATION [J].
BARNSLEY, MF .
CONSTRUCTIVE APPROXIMATION, 1986, 2 (04) :303-329
[6]   THE CALCULUS OF FRACTAL INTERPOLATION FUNCTIONS [J].
BARNSLEY, MF ;
HARRINGTON, AN .
JOURNAL OF APPROXIMATION THEORY, 1989, 57 (01) :14-34
[7]  
Barnsley MF., 1988, FRACTALS EVERYWHERE
[8]  
Basheer S, 2020, INCREASED DETECTION, DOI [10.1101/2020.04.05.20054775v1, DOI 10.1101/2020.04.05.20054775V1]
[9]   COVID-19: towards controlling of a pandemic [J].
Bedford, Juliet ;
Enria, Delia ;
Giesecke, Johan ;
Heymann, David L. ;
Ihekweazu, Chikwe ;
Kobinger, Gary ;
Lane, H. Clifford ;
Memish, Ziad ;
Oh, Myoung-don ;
Sall, Amadou Alpha ;
Schuchat, Anne ;
Ungchusak, Kumnuan ;
Wieler, Lothar H. .
LANCET, 2020, 395 (10229) :1015-1018
[10]   Evidence Synthesis for Stochastic Epidemic Models [J].
Birrell, Paul J. ;
De Angelis, Daniela ;
Presanis, Anne M. .
STATISTICAL SCIENCE, 2018, 33 (01) :34-43