Grobner Representations of Binary Matroids

被引:0
作者
Borges-Quintana, M. [1 ]
Borges-Trenard, M. A. [1 ]
Martinez-Moro, E. [2 ]
机构
[1] U Oriente, FCMC, Dpto Matemat, Santiago De Cuba, Cuba
[2] Univ Valladolid, Dept Math Appl, Valladolid, Spain
来源
APPLIED ALGEBRA, ALGEBRAIC ALGORITHMS, AND ERROR-CORRECTING CODES | 2009年 / 5527卷
关键词
FGLM TECHNIQUES; BASES;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Several constructions in binary linear block codes are also related to matroid theory topics. These constructions rely on a given order in the ground set of the matroid. In this paper we define the Grobner representation of a binary matroid and we show how it can be used for studying different sets bases, cycles, activity intervals, etc.
引用
收藏
页码:227 / +
页数:3
相关论文
共 15 条
  • [1] [Anonymous], 1992, IDEALS VARIETIES ALG, DOI DOI 10.1007/978-1-4757-2181-2
  • [2] On a Grobner bases structure associated to linear codes
    Borges-Quintana, M.
    Borges-Trenard, M. A.
    Martinez-Moro, E.
    [J]. JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2007, 10 (02) : 151 - 191
  • [3] Grobner bases and combinatorics for binary codes
    Borges-Quintana, M.
    Borges-Trenard, M. A.
    Fitzpatrick, P.
    Martinez-Moro, E.
    [J]. APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2008, 19 (05) : 393 - 411
  • [4] Borges-Quintana M, 2007, SER CODING THEORY CR, V3, P17
  • [5] Borges-Quintana MB, 2006, LECT NOTES COMPUT SC, V3857, P76
  • [6] Computing Grobner bases by FGLM techniques in a non-commutative setting
    Borges-Trenard, MA
    Borges-Quintana, M
    Mora, T
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 2000, 30 (04) : 429 - 449
  • [7] CAMERON P, CODES MATROIDS TRELL
  • [8] ESMAEILI M, 1996, LNCS, V1133, P130
  • [9] EFFICIENT COMPUTATION OF ZERO-DIMENSIONAL GROBNER BASES BY CHANGE OF ORDERING
    FAUGERE, JC
    GIANNI, P
    LAZARD, D
    MORA, T
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 1993, 16 (04) : 329 - 344
  • [10] On the trellis structure of block codes
    Kschischang, FR
    Sorokine, V
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1995, 41 (06) : 1924 - 1937