Single Enzyme Direct Biomineralization of CdSe and CdSe-CdS Core Shell Quantum Dots

被引:18
作者
Yang, Zhou [1 ]
Lu, Li [2 ]
Kiely, Christopher J. [1 ,2 ]
Berger, Bryan W. [1 ,3 ]
McIntosh, Steven [1 ]
机构
[1] Lehigh Univ, Dept Chem & Biomol Engn, Bethlehem, PA 18015 USA
[2] Lehigh Univ, Dept Mat Sci & Engn, Bethlehem, PA 18015 USA
[3] Lehigh Univ, Program Bioengn, Bethlehem, PA 18015 USA
基金
美国国家科学基金会;
关键词
single enzyme biomineralization; cadmium selenide; cadmium sulfide; quantum dot; core-shell; cystathionine gamma-lyase; ALBUMIN-MEDIATED BIOMINERALIZATION; SENSITIZED SOLAR-CELLS; CORE/SHELL NANOCRYSTALS; IN-VIVO; GROWTH; SELENOCYSTEINE; NANOPARTICLES; BIOSYNTHESIS;
D O I
10.1021/acsami.7b00133
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Biomineralization is the process by which biological systems synthesize inorganic materials. Herein, we demonstrate an engineered cystathionine gamma-lyase enzyme, smCSE that is active for the direct aqueous phase biomineralization of CdSe and CdSe-CdS core-shell nanocrystals. The nanocrystals are formed in an otherwise unreactive buffered solution of Cd acetate and selenocystine through enzymatic turnover of the selenocystine to form a reactive precursor, likely H2Se. The particle size of the CdSe core nanocrystals can be tuned by varying the incubation time to generated particle sizes between 2.74 +/- 0.63 nm and 4.78 +/- 1.16 am formed after 20 min and 24 h of incubation, respectively. Subsequent purification and introduction of L-cysteine as a sulfur source facilitates the biomineralization of a CdS shell onto the CdSe cores. The quantum yield of the resulting CdSe-CdS core-shell particles is up to 12% in the aqueous phase; comparable to that reported for more traditional chemical synthesis routes for core-shell particles of similar size with similar shell coverage. This single-enzyme route to functional nanocrystals synthesis reveals the powerful potential of biomineralization processes.
引用
收藏
页码:13430 / 13439
页数:10
相关论文
共 37 条
[1]   Photochemical instability of CdSe nanocrystals coated by hydrophilic thiols [J].
Aldana, J ;
Wang, YA ;
Peng, XG .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (36) :8844-8850
[2]   Size-dependent band gap of colloidal quantum dots [J].
Baskoutas, S ;
Terzis, AF .
JOURNAL OF APPLIED PHYSICS, 2006, 99 (01)
[3]  
Chen O, 2013, NAT MATER, V12, P445, DOI [10.1038/NMAT3539, 10.1038/nmat3539]
[4]   Living Yeast Cells as a Controllable Biosynthesizer for Fluorescent Quantum Dots [J].
Cui, Ran ;
Liu, Hui-Hui ;
Xie, Hai-Yan ;
Zhang, Zhi-Ling ;
Yang, Yi-Ran ;
Pang, Dai-Wen ;
Xie, Zhi-Xiong ;
Chen, Bei-Bei ;
Hu, Bin ;
Shen, Ping .
ADVANCED FUNCTIONAL MATERIALS, 2009, 19 (15) :2359-2364
[5]   Single-enzyme biomineralization of cadmium sulfide nanocrystals with controlled optical properties [J].
Dunleavy, Robert ;
Lu, Li ;
Kiely, Christopher J. ;
McIntosh, Steven ;
Berger, Bryan W. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (19) :5275-5280
[6]   ENZYMATIC-SYNTHESIS OF SELENOCYSTEINE IN RAT-LIVER [J].
ESAKI, N ;
NAKAMURA, T ;
TANAKA, H ;
SUZUKI, T ;
MORINO, Y ;
SODA, K .
BIOCHEMISTRY, 1981, 20 (15) :4492-4496
[7]   Ex situ formation of metal selenide quantum dots using bacterially derived selenide precursors [J].
Fellowes, J. W. ;
Pattrick, R. A. D. ;
Lloyd, J. R. ;
Charnock, J. M. ;
Coker, V. S. ;
Mosselmans, J. F. W. ;
Weng, T-C ;
Pearce, C. I. .
NANOTECHNOLOGY, 2013, 24 (14)
[8]  
Grabolle M., 2008, Anal. Chem, V81, P6285, DOI DOI 10.1021/ac900308v
[9]   COMPARISON OF CHEMICAL PROPERTIES OF SELENOCYSTEINE AND SELENOCYSTINE WITH THEIR SULFUR ANALOGS [J].
HUBER, RE ;
CRIDDLE, RS .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1967, 122 (01) :164-&
[10]   Ambient Synthesis and Characterization of High-Quality CdSe Quantum Dots by an Aqueous Route [J].
Kalasad, M. N. ;
Rabinal, A. K. ;
Mulimani, B. G. .
LANGMUIR, 2009, 25 (21) :12729-12735