MAXIMUM AND ENTROPIC REPULSION FOR A GAUSSIAN MEMBRANE MODEL IN THE CRITICAL DIMENSION

被引:21
作者
Kurt, Noemi [1 ]
机构
[1] Univ Zurich, Inst Math, CH-8057 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
Random interfaces; membrane model; entropic repulsion; discrete biharmonic Green's function; FREE-FIELD; INTERFACE;
D O I
10.1214/08-AOP417
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the real-valued centered Gaussian field on the four-dimensional integer lattice, whose covariance matrix is given by the Green's function of the discrete Bilaplacian. This is interpreted as a model for a semi-flexible membrane. d = 4 is the critical dimension for this model. We discuss the effect of a hard wall on the membrane, via a multiscale analysis of the maximum of the field. We use analytic and probabilistic tools to describe the correlation structure of the field.
引用
收藏
页码:687 / 725
页数:39
相关论文
共 15 条
[1]  
[Anonymous], GRUYTER STUDIES MATH
[2]   ENTROPIC REPULSION OF THE LATTICE FREE-FIELD [J].
BOLTHAUSEN, E ;
DEUSCHEL, JD ;
ZEITOUNI, O .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 170 (02) :417-443
[3]  
Bolthausen E, 2001, ANN PROBAB, V29, P1670
[4]  
CARAVENNA F, ANN PROBAB IN PRESS
[5]  
CARAVENNA F, SCALING LIMITS DIMEN
[6]   Extremes of the discrete two-dimensional Gaussian free field [J].
Daviaud, Olivier .
ANNALS OF PROBABILITY, 2006, 34 (03) :962-986
[7]  
GIACOMIN G, IHP FALL 2001
[8]   DIFFUSION EQUATION TECHNIQUES IN STOCHASTIC MONOTONICITY AND POSITIVE CORRELATIONS [J].
HERBST, I ;
PITT, L .
PROBABILITY THEORY AND RELATED FIELDS, 1991, 87 (03) :275-312
[9]   Local contacts of membranes and strings [J].
Hiergeist, C ;
Lipowsky, R .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1997, 244 (1-4) :164-175
[10]   Entropic repulsion for a class of Gaussian interface models in high dimensions [J].
Kurt, Noemi .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2007, 117 (01) :23-34