The Robin and Neumann problems for the nonlinear Schrodinger equation on the half-plane

被引:1
|
作者
Himonas, A. Alexandrou [1 ]
Mantzavinos, Dionyssios [2 ]
机构
[1] Univ Notre Dame, Dept Math, Notre Dame, IN 46556 USA
[2] Univ Kansas, Dept Math, Lawrence, KS 66045 USA
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2022年 / 478卷 / 2265期
基金
美国国家科学基金会;
关键词
two-dimensional nonlinear Schrodinger equation; initial-boundary value problem with Neumann and Robin boundary conditions; unified transform method of Fokas; well-posedness in Sobolev spaces; Bourgain spaces; linear space-time estimates; BOUNDARY-VALUE-PROBLEM; DE-VRIES EQUATION; TRANSFORM METHOD; WAVES; MODULATION; REGULARITY;
D O I
10.1098/rspa.2022.0279
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This work studies the initial-boundary value problem (ibvp) of the two-dimensional nonlinear Schrodinger equation on the half-plane with initial data in Sobolev spaces and Neumann or Robin boundary data in appropriate Bourgain spaces. It establishes well-posedness in the sense of Hadamard by using the explicit solution formula for the forced linear ibvp obtained via Fokas's unified transform, and a contraction mapping argument.
引用
收藏
页数:20
相关论文
共 50 条