共 29 条
Transcription factor NFκB regulates the expression of the histone deacetylase SIRT1
被引:46
作者:
Katto, Judith
[1
]
Engel, Nicole
[2
]
Abbas, Wasim
[3
]
Herbein, Georges
[3
]
Mahlknecht, Ulrich
[1
,2
,4
]
机构:
[1] Univ Saarland, Med Ctr, Jose Carreras Ctr Immunotherapy & Gene Therapy, D-66421 Homburg, Germany
[2] Heidelberg Univ, Med Ctr, Dept Internal Med, D-69120 Heidelberg, Germany
[3] Univ Franche Comte, CHU Besancon, Dept Virol, Pathogens & Inflammat Res Unit UPRES EA4266,SFR F, F-25030 Besancon, France
[4] St Lukas Klin Solingen, Dept Haematol Oncol, D-42697 Solingen, Germany
关键词:
Protein deacetylase SIRT1;
Nuclear factor NF-kappa-B;
Apoptosis;
CALORIE RESTRICTION;
CELL-SURVIVAL;
SACCHAROMYCES-CEREVISIAE;
LIFE-SPAN;
LONGEVITY;
NAD;
P53;
METABOLISM;
MECHANISMS;
PHYSIOLOGY;
D O I:
10.1186/1868-7083-5-11
中图分类号:
R73 [肿瘤学];
学科分类号:
100214 ;
摘要:
Background: The NAD-dependent protein deacetylase SIRT1 has a wide range of different targets, which may be regulated either directly through deacetylation and thus potentially altering their activity or localization or indirectly by deacetylation of histones, which in turn alters their transcription rate and availability. SIRT1 is therefore involved in the regulation of many different and fundamental cellular processes such as apoptosis, metabolism, differentiation and cell cycle arrest. It is also involved in the regulation of resistance of cells against oxidative stress and longevity under conditions of caloric restriction. Even though the targets and role of SIRT1 have been studied quite intensively, only little is known about the mechanisms affecting SIRT1 transcriptional regulation. The nuclear factor NF kappa B is a well-studied and widely known transcription factor, which is involved in the regulation of many important cellular activities. The regulation of NF kappa B by SIRT1 has been reported recently, but it is, however, still unknown whether a feedback mechanism affects the regulation of SIRT1 too, particularly in view of the fact that putative NF kappa B binding sites within the SIRT1 promoter suggest just that. Results: In the study presented herein we show that there is activation of the SIRT1 promoter by overexpression of different NF kappa B subunits. Direct binding of NF kappa B to the SIRT1 promoter can be demonstrated by an electrophoretic mobility shift assay. Further investigations indicated enhanced expression of SIRT1 on the mRNA levels in cells overexpressing NF kappa B. A functional assay showed that acetylation of one of the main target proteins of SIRT1 is reduced in these cells. Conclusions: These finding together indicate SIRT1 expression to be regulated in a positive feedback loop by NF kappa B. The putative binding sites for NF kappa B found within the SIRT1 promoter appears to be functional and several NF kappa B subunits are able to enhance the expression of SIRT1 if they are overexpressed.
引用
收藏
页数:9
相关论文